Câu hỏi:
27/04/2023 211
Phân tích đa thức sau thành nhân tử: \({x^4}\left( {y - z} \right) + {y^4}\left( {z - x} \right) + {z^4}\left( {x - y} \right)\).
Phân tích đa thức sau thành nhân tử: \({x^4}\left( {y - z} \right) + {y^4}\left( {z - x} \right) + {z^4}\left( {x - y} \right)\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
\({x^4}\left( {y - z} \right) + {y^4}\left( {z - x} \right) + {z^4}\left( {x - y} \right) = \left( {{x^4}y - x{y^4}} \right) + {z^4}\left( {x - y} \right) - z\left( {{x^4} - {y^4}} \right)\)
\( = xy\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) + {z^4}\left( {x - y} \right) - z\left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)\)
\( = \left( {x - y} \right)\left( {{x^3}y + {x^2}{y^2} + x{y^3} + {z^4} - z{x^3} - x{y^2}z - {x^2}yz - {y^3}z} \right)\)
\( = \left( {x - y} \right)\left[ {\left( {{x^3}y - {x^3}z} \right) + \left( {{x^2}{y^2} - {x^2}yz} \right) + \left( {x{y^3} - x{y^2}z} \right) + \left( {{z^4} - {y^3}z} \right)} \right]\)
\( = \left( {x - y} \right)\left[ {{x^3}\left( {y - z} \right) + {x^2}y\left( {y - z} \right) + x{y^2}\left( {y - z} \right) - z\left( {y - z} \right)\left( {{y^2} + yz + {z^2}} \right)} \right]\)
\( = \left( {x - y} \right)\left( {y - z} \right)\left( {{x^3} + {x^2}y + x{y^2} - z\left( {{y^2} + yz + {z^2}} \right)} \right)\)
\( = \left( {x - y} \right)\left( {y - z} \right)\left[ {\left( {{x^3} - {z^3}} \right) + \left( {{x^2}y - y{z^2}} \right) + \left( {x{y^2} - {y^2}z} \right)} \right]\)
\( = \left( {x - y} \right)\left( {y - z} \right)\left[ {\left( {x - z} \right)\left( {{x^2} + xz + {z^2}} \right) + y\left( {x - z} \right)\left( {x + z} \right) + {y^2}\left( {x - z} \right)} \right]\)
\( = \left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)\left( {{x^2} + {y^2} + {z^2} + xy + yz + xz} \right)\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ = \sqrt 7 \)
Gọi AH là đường phân giác góc A.
Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)
\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)
\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)
\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)
Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).
Lời giải
Ta có: 0 < x < \(\frac{\pi }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\sin x > 0}\\{\cos x > 0}\end{array}} \right.\)
+) \({\cos ^2}x + {\sin ^2}x = 1 \Leftrightarrow {\frac{2}{{\sqrt 5 }}^2} + {\sin ^2}x = 1\)
\( \Leftrightarrow {\sin ^2}x = \frac{1}{5} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin x = \frac{1}{{\sqrt 5 }}\left( {TM} \right)}\\{\sin x = - \frac{1}{{\sqrt 5 }}\left( L \right)}\end{array}} \right.\)
\( + )1 + {\cos ^2}x = \frac{1}{{{{\cos }^2}x}} \Leftrightarrow 1 + {\cos ^2}x = \frac{1}{{{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^2}}}\)
\( \Leftrightarrow {\tan ^2}x = \frac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\tan x = \frac{1}{2}(TM)}\\{{\mathop{\rm t}\nolimits} = - \frac{1}{2}(L)}\end{array}} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.