Câu hỏi:

19/08/2025 234 Lưu

Phân tích đa thức sau thành nhân tử: \({x^4}\left( {y - z} \right) + {y^4}\left( {z - x} \right) + {z^4}\left( {x - y} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\({x^4}\left( {y - z} \right) + {y^4}\left( {z - x} \right) + {z^4}\left( {x - y} \right) = \left( {{x^4}y - x{y^4}} \right) + {z^4}\left( {x - y} \right) - z\left( {{x^4} - {y^4}} \right)\)

\( = xy\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) + {z^4}\left( {x - y} \right) - z\left( {x - y} \right)\left( {x + y} \right)\left( {{x^2} + {y^2}} \right)\)

\( = \left( {x - y} \right)\left( {{x^3}y + {x^2}{y^2} + x{y^3} + {z^4} - z{x^3} - x{y^2}z - {x^2}yz - {y^3}z} \right)\)

\( = \left( {x - y} \right)\left[ {\left( {{x^3}y - {x^3}z} \right) + \left( {{x^2}{y^2} - {x^2}yz} \right) + \left( {x{y^3} - x{y^2}z} \right) + \left( {{z^4} - {y^3}z} \right)} \right]\)

\( = \left( {x - y} \right)\left[ {{x^3}\left( {y - z} \right) + {x^2}y\left( {y - z} \right) + x{y^2}\left( {y - z} \right) - z\left( {y - z} \right)\left( {{y^2} + yz + {z^2}} \right)} \right]\)

\( = \left( {x - y} \right)\left( {y - z} \right)\left( {{x^3} + {x^2}y + x{y^2} - z\left( {{y^2} + yz + {z^2}} \right)} \right)\)

\( = \left( {x - y} \right)\left( {y - z} \right)\left[ {\left( {{x^3} - {z^3}} \right) + \left( {{x^2}y - y{z^2}} \right) + \left( {x{y^2} - {y^2}z} \right)} \right]\)

\( = \left( {x - y} \right)\left( {y - z} \right)\left[ {\left( {x - z} \right)\left( {{x^2} + xz + {z^2}} \right) + y\left( {x - z} \right)\left( {x + z} \right) + {y^2}\left( {x - z} \right)} \right]\)

\( = \left( {x - y} \right)\left( {x - z} \right)\left( {y - z} \right)\left( {{x^2} + {y^2} + {z^2} + xy + yz + xz} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có AB = 2, AC = 3, góc A = 60 độ. Tính độ dài phân giác góc A (ảnh 1)

Áp dụng định lí hàm số côsin cho ∆ABC ta có: \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.cos60^\circ  = \sqrt 7 \)

Gọi AH là đường phân giác góc A.

Áp dụng tính chất đường phân giác cho ∆ABC: \(\frac{{AB}}{{AC}} = \frac{{BH}}{{HC}}\)

\(\frac{{AB}}{{BH}} = \frac{{AC}}{{HC}} = \frac{{AB + AC}}{{BH + HC}} = \frac{{2 + 3}}{{BC}} = \frac{5}{{\sqrt 7 }}\)

\( \Rightarrow BH = AB:\frac{5}{{\sqrt 7 }} = \frac{{2\sqrt 7 }}{5}\)

\(\cos \widehat B = \frac{{A{C^2} - A{B^2} - B{C^2}}}{{ - 2AB.BC}} = \frac{{\sqrt 7 }}{{14}}\)

Xét ∆ABH có: \(A{H^2} = A{B^2} + B{H^2} - 2.AB.BH.cos\widehat B = \frac{{108}}{{25}} \Rightarrow AH = \frac{{6\sqrt 3 }}{5}\).

Lời giải

\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}}\)

\(\frac{{\sin A}}{{\sin B}} = \frac{a}{b} = \frac{5}{4}\), b = 8

\(\frac{a}{{\sin A}} = \frac{c}{{\sin C}}\)

\(\frac{{\sin A}}{{\sin C}} = \frac{a}{c} = \frac{5}{3}\), c = 6

Chu vi là: 8 + 6 + 10 = 24.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP