Câu hỏi:

02/05/2023 7,187

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2) có bảng biến thiên như bên dưới.

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 1)
Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình 4+mx2.ffxm=0 có 5 phần tử bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Từ gt tìm được fx=x3+3x22 có BBT

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 2)

Phương trình 4+mx2.ffxm=0   (*), Đk :4+mx20

(*)4+mx2=0           (1)4+mx2>0ffxm=0(2)

TH1:

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 3)

TH2:

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 4)

Yêu cầu bài toán

1+m>22<13+m<2m>13+3<m<1+31<m<1+3m=2

TH3: Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 5)

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 6)

Ðk:4+mx2>0x2>4mx2m;2m

Yêu cầu bài toán ó <=> (2) có đúng 3 nghiệm phân biệt 2m;2m**

Nếu 1+m+32m13;m<0 không có số nguyên nào thỏa mãn1+m+3<2

Nếu 1+m+32  (3), (4), (5), mỗi pt 1 nghiệm và nghiệm > 3( không thỏa mãn)

Nên 1+m+3(2;2)-3-3<m<1-3 có các giá trị m nguyên là m4;3;2;1

+) m=4(3)f(x)=33 có 1 nghiệm > 3( không tm)

(4) <=> f(x) = -3 -> 1 nghiệm > 3 (KTM)

(5)f(x)=33 có 3 nghiệm pb trong đó có 1 nghiệm > 2 (KTM)

+) m = -3

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 7)

+) m = -2

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 8)

+) m = -1

Cho hàm số bậc ba y = f(x). Hàm số g(x) = f(x + 2)  có bảng biến thiên như bên dưới.  Tổng tất cả các giá trị nguyên của tham số m để tập nghiệm của phương trình  (ảnh 9)

Vậy m = 2 hoặc m = -3, nên tổng các giá trị của m bằng -1, chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới.

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới.  Số nghiệm thực phân biệt của phương trình f[f(x) + 1] + 2 = 0 là (ảnh 1)

Số nghiệm thực phân biệt của phương trình ffx+1+2=0 là

Xem đáp án » 02/05/2023 16,148

Câu 2:

Tìm tất cả các giá trị thực của tham số m để hàm số y=x2+x+m13 có tập xác định là R

Xem đáp án » 02/05/2023 15,912

Câu 3:

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng (ảnh 1)

Xem đáp án » 02/05/2023 14,996

Câu 4:

Cho hàm số y = f(x) có đạo hàm f'(x) = x(2 - x) . Số điểm cực trị của hàm số y = f(x) là

Xem đáp án » 02/05/2023 13,783

Câu 5:

Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) là đường cong ở hình bên dưới. Hàm số y = f(x) có bao nhiêu điểm cực trị?
Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) là đường cong ở hình bên dưới. Hàm số y = f(x) có bao nhiêu điểm cực trị? (ảnh 1)

Xem đáp án » 02/05/2023 12,009

Câu 6:

Cho khối trụ có chiều cao h bằng bán kính đáy và thể tích V=27π. Tính chiều cao h của khối trụ đó.

Xem đáp án » 02/05/2023 10,124

Câu 7:

Cho hàm số y=x33x+m (m là tham số thực), thỏa mãn miny0;2=3. Mệnh đề nào dưới đây đúng?

Xem đáp án » 02/05/2023 7,936

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store