Câu hỏi:
02/05/2023 988Trong mặt phẳng (P) cho tam giác ABC có AB = 1, AC = 2, . Điểm S thay đổi thuộc đường thẳng đi qua A và vuông góc với (P), (S khác A). Gọi B1, C1 lần lượt là hình chiếu vuông góc của A trên SB, SC. Đường kính MN thay đổi của mặt cầu (T) ngoại tiếp khối đa diện ABCB1C1 và I là điểm cách tâm mặt cầu (T) một khoảng bằng ba lần bán kính. Tính giá trị nhỏ nhất của IM + IN.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn C
Ta có .
Bán kính đường tròn ngoại tiếp tam giác ABC: .
Gọi J là tâm đường tròn ngoại tiếp tam giác ABC, A' là điểm đối xứng của A qua J.
Ta dễ dàng chứng minh được: đều thuộc mặt cầu tâm J, đường kính .
Đặt .
+ Nếu I, J, M, N thẳng hàng thì .
+ Nếu I, J, M, N không thẳng hàng thì
.
Vậy, ta luôn có: .
Do .
.
Vậy .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới.
Số nghiệm thực phân biệt của phương trình là
Câu 3:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!