Câu hỏi:
02/05/2023 1,101Trong mặt phẳng (P) cho tam giác ABC có AB = 1, AC = 2, . Điểm S thay đổi thuộc đường thẳng đi qua A và vuông góc với (P), (S khác A). Gọi B1, C1 lần lượt là hình chiếu vuông góc của A trên SB, SC. Đường kính MN thay đổi của mặt cầu (T) ngoại tiếp khối đa diện ABCB1C1 và I là điểm cách tâm mặt cầu (T) một khoảng bằng ba lần bán kính. Tính giá trị nhỏ nhất của IM + IN.
Quảng cáo
Trả lời:
Chọn C
Ta có .
Bán kính đường tròn ngoại tiếp tam giác ABC: .
Gọi J là tâm đường tròn ngoại tiếp tam giác ABC, A' là điểm đối xứng của A qua J.
Ta dễ dàng chứng minh được: đều thuộc mặt cầu tâm J, đường kính .
Đặt .
+ Nếu I, J, M, N thẳng hàng thì .
+ Nếu I, J, M, N không thẳng hàng thì
.
Vậy, ta luôn có: .
Do .
.
Vậy .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 986
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ A đến mặt phẳng (BDD'B') bằng
Câu 2:
Câu 3:
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới.
Số nghiệm thực phân biệt của phương trình là
Câu 4:
Câu 5:
Câu 6:
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận