Câu hỏi:
12/07/2024 6,214Cho đường tròn (O) dây cung BC (BC không là đường kính). Điểm A di động trên cung nhỏ BC (A khác B và C, độ dài cạnh AB khác AC). Kẻ đường kính AA' của đường tròn (O), D là chân đường vuông góc kẻ từ A đến BC. Hai điểm E, F lần lượt là chân đường vuông góc kẻ từ B, C đến AA'.
a) Chứng minh rằng 4 điểm A, B, D, E cùng nằm trên 1 đường tròn.
b) Chứng minh BD.AC = AD.A'C.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Vì BE ⊥ AA' suy ra
AD ⊥ BC suy ra
Suy ra tứ giác AEDB có cùng nhìn cạnh AB dưới 1 góc bằng 90°.
Suy ra tứ giác AEDB nội tiếp.
Hay 4 điểm A, B, D, E cùng nằm trên 1 đường tròn.
b) Xét tam giác ACA' và tam giác ADB có:
(cùng chắn cung AC)
Do đó
Suy ra (tỉ số đồng dạng)
Hay BD.AC = AD.A'C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.
a) Chứng minh hai tam giác ABM và ACM bằng nhau.
b) Chứng minh AM vuông góc với BC.
c) Chứng minh AM là phân giác của góc A.
Câu 3:
Một người đứng trên tháp quan sát của ngọn hải đăng cao 50 m nhìn về hướng Tây Nam, người đó quan sát hai lần một con thuyền đang hướng về ngọn hải đăng. Lần thứ nhất người đó nhìn thấy thuyền với góc hạ là 20°, lần thứ 2 người đó nhìn thấy thuyền với góc hạ là 30°. Hỏi con thuyền đã đi được bao nhiêu mét giữa hai lần quan sát? (làm tròn đến chữ số thập phân thứ nhất)
Câu 4:
Một mảnh đất hình chữ nhật bị xén đi một góc (hình vẽ), phần còn lại có dạng hình tứ giác ABCD với độ dài các cạnh là AB = 15m, BC = 19m, CD = 10m, DA = 20m. Diện tích mảnh đất ABCD bằng bao nhiêu mét vuông (làm tròn kết quả đến hàng đơn vị).
Câu 5:
Cho (O), điểm A ở bên ngoài đường tròn. Vẽ các tiếp tuyến AB, AC và cát tuyến ADE. Gọi H là trung điểm của DE.
a) Chứng minh 5 điểm A, B, H, O, C cùng thuộc 1 đường tròn.
b) Chứng minh HA là tia phân giác của góc BHC.
c) Gọi I là giao của BC và DE. Chứng minh AB2 = AI.AH.
d) BH cắt (O) ở K. Chứng minh AE // CK.
Câu 6:
Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B.
a) Chứng minh tứ giác ABHM nội tiếp.
b) Chứng minh OA.OB = OH.OM = R2.
c) Chứng minh tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.
d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!