Câu hỏi:

11/05/2023 339

Trao đổi, thảo luận và tìm hiểu ý tưởng thực hiện các tính toán sau bằng kĩ thuật đệ quy.

1. Tính tổng S(n)=1+2+3+...+n

2. Tính lũy thừa an=a×a×...×a  (n  lan) 

3. Tính n giai thừa n!=1×2×3×...×n

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1. Tính tổng S(n)=1+2+3+...+n

Bước 1. Bài toán yêu cầu tính tổng của n số nguyên từ 1 đến n. Cần thiết lập hàm S(n) trả về giá trị tổng cần tim.
Bước 2. Điều kiện n ≥ 0.
Với n = 0 ta có S(n) = 0. Đây là phần cơ sở cho điều kiện
dừng của lời gọi đệ quy của hàm S(n).
Bước 3. Dễ thấy S(n) = n + S(n - 1) là công thức truy hồi của hàm S(n) và là cơ sở của lời gọi đệ quy của hàm.Chương trình như sau:

2. Tính lũy thừa an=a×a×...×a  (n  lan) 

Bước 1. Bài toán yêu cầu tính luỹ thừa an. Cần thiết lập hàm exp(a,n) trả về giá trị an.
Bước 2. Điều kiện là n ≥ 0 và theo quy ước thì exp(a,0) = 1 với mọi a. Đây chính là phần cơ sở cho điều kiện dừng của lời gọi đệ quy của hàm exp(a,n).
Bước 3. Ta có an=a·an1 suy ra exp(a,n) = a × exp(a,n-1), đây là công thức truy hồi tính exp(a,n). Từ đó có thể thiết lập lời gọi đệ quy của hàm này.

3. Tính n giai thừa n!=1×2×3×...×n

Bước 1. Bài toán yêu cầu tính n giai thừa n!. Ta cần thiết lập hàm giaithua(n) trả về giá trị n!.
Bước 2. Điều kiện là n ≥ 0 và quy ước 0! = 1, tức là giaithua (0) = 1. Đây là cơ sở cho điều kiện dừng của lời gọi đệ quy của hàm giaithua(n).
Bước 3. Ta có công thức giaithua(n) = n × giaithua(n-1), đây là công thức truy hồi tính giaithua(n). Từ đó dễ dàng thiết lập lời gọi đệ quy cho hàm này.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Không sử dụng đệ quy:

Để tính tổng của một dãy số A, ta có thể sử dụng vòng lặp for để cộng dồn từng phần tử trong dãy A lại với nhau

Viết chương trình tổng  S=1!+2!+...+n! theo hai cách: a) Không sử dụng đệ quy b) Có sử dụng kĩ thuật đệ quy (ảnh 1)

b) Có sử dụng kĩ thuật đệ quy:

Để tính tổng của một dãy số A sử dụng kĩ thuật đệ quy, ta có thể thực hiện theo thuật toán sau:

1. Kiểm tra điều kiện dừng: nếu A rỗng, tổng của dãy là 0.

2. Trường hợp ngược lại, tính tổng của dãy bằng tổng của phần tử cuối cùng của dãy A (A[-1]) cộng với tổng của dãy A trừ phần tử cuối cùng (A[:-1]).

Lời giải

Để tính hàm SL(n) là tổng các số tự nhiên lẻ nhỏ hơn hoặc bằng n theo kĩ thuật đệ quy, ta có thể sử dụng thuật toán sau:

1. Kiểm tra điều kiện dừng: nếu n = 1, trả về giá trị 1.

2. Nếu n là số lẻ, ta tính SL(n-2) và cộng thêm n vào kết quả.

3. Nếu n là số chẵn, ta tính SL(n-1) và không cộng thêm n vào kết quả.

Viết chương trình theo kĩ thuật đệ quy để tính hàm SL(n) là tổng các số tự nhiên lẻ nhỏ hơn hoặc bằng n (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP