Câu hỏi:

11/05/2023 229

Vì sao trong ý tưởng thiết kế đệ quy trên, yêu cầu từ bài toán với kích thước lớn cần phải đưa về cùng bài toán đó với kích thước nhỏ hơn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trong ý tưởng thiết kế đệ quy, yêu cầu đưa bài toán với kích thước lớn về cùng bài toán đó với kích thước nhỏ hơn bởi vì các bài toán lớn có thể được phân chia thành các bài toán con nhỏ hơn và tương tự như vậy cho đến khi đạt được bài toán nhỏ nhất mà ta có thể giải quyết trực tiếp. Khi đó, ta sử dụng kết quả của các bài toán con này để giải quyết bài toán ban đầu lớn hơn. Nhờ vậy, lời giải ngắn gọn và dễ hiểu hơn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Không sử dụng đệ quy:

Để tính tổng của một dãy số A, ta có thể sử dụng vòng lặp for để cộng dồn từng phần tử trong dãy A lại với nhau

Viết chương trình tổng  S=1!+2!+...+n! theo hai cách: a) Không sử dụng đệ quy b) Có sử dụng kĩ thuật đệ quy (ảnh 1)

b) Có sử dụng kĩ thuật đệ quy:

Để tính tổng của một dãy số A sử dụng kĩ thuật đệ quy, ta có thể thực hiện theo thuật toán sau:

1. Kiểm tra điều kiện dừng: nếu A rỗng, tổng của dãy là 0.

2. Trường hợp ngược lại, tính tổng của dãy bằng tổng của phần tử cuối cùng của dãy A (A[-1]) cộng với tổng của dãy A trừ phần tử cuối cùng (A[:-1]).

Lời giải

Để tính hàm SL(n) là tổng các số tự nhiên lẻ nhỏ hơn hoặc bằng n theo kĩ thuật đệ quy, ta có thể sử dụng thuật toán sau:

1. Kiểm tra điều kiện dừng: nếu n = 1, trả về giá trị 1.

2. Nếu n là số lẻ, ta tính SL(n-2) và cộng thêm n vào kết quả.

3. Nếu n là số chẵn, ta tính SL(n-1) và không cộng thêm n vào kết quả.

Viết chương trình theo kĩ thuật đệ quy để tính hàm SL(n) là tổng các số tự nhiên lẻ nhỏ hơn hoặc bằng n (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP