Câu hỏi:
12/07/2024 12,879Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.
a. Chứng minh tứ giác IEKB nội tiếp.
b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).
c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).
d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải:
a. Ta có: \(\widehat {AKB} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn đường kinh AB)
Tứ giác IEKB có: \(\widehat {AKB} = 90^\circ = \widehat {EKB};\widehat {EIB} = 90^\circ \)
Có tổng 2 góc đối \(\widehat {EKB} + \widehat {EIB} = 90^\circ + 90^\circ = 180^\circ \)
⇒ Tứ giác IEKB nội tiếp đường tròn đường kính EB
b. Xét ∆AME và ∆AKM: \(\widehat {MAE}\) chung; \(\widehat {AME} = \widehat {AKM}\) (góc nội tiếp cùng chắn 2 cung AM = AN)
⇒ ∆AME ∆AKM(g.g)
\( \Rightarrow \frac{{AM}}{{AK}} = \frac{{AE}}{{AM}}\) (hai cạnh tương ứng tỉ lệ) \( \Rightarrow A{M^2} = AE.AK\)
c. Áp dụng hệ thức lượng vào ∆ANB vuông tại N, đường cao NI ⊥ AB ta có:
\(BI.BA = N{B^2}\)
Và ta có \(AE.AK = A{M^2} = A{N^2}\) (chứng minh câu b và AM = AN, tính chất đường kính và dây cung)
\( \Rightarrow AE.AK + BI.BA = A{N^2} + N{B^2} = A{B^2}\) (áp dụng Pytago vào ∆ANB)
\( = {\left( {2R} \right)^2} = 4{R^2}\).
Vậy \(AE.AK + BI.BA = 4{R^2}\).
d. ∆MIO vuông tại I, áp dụng định lí Pytago ta có: \(O{I^2} + M{I^2} = O{M^2} = {R^2}\)
Ta có: \({\left( {MI - IO} \right)^2} \ge 0 \Leftrightarrow 2M{I^2} + 2I{O^2} \ge M{I^2} + I{O^2} + 2MI.IO = {\left( {MI + IO} \right)^2}\)
\( \Rightarrow MI + IO \le \sqrt {2\left( {M{I^2} + I{O^2}} \right)} = R\sqrt 2 \)
Chu vi tam giác MIO là P = MI + IO + MO ≤ \(R\sqrt 2 + R\).
Chu vi P đạt giá trị lớn nhất bằng \(R\sqrt 2 + R\) khi MI + IO = \(R\sqrt 2 \) hay MI = IO = \(\frac{{R\sqrt 2 }}{2}\).
Vậy điểm I nằm trên AO sao cho IO = \(\frac{{R\sqrt 2 }}{2}\) thì chu vi ∆MIO đạt GTLN.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận