Câu hỏi:

12/07/2024 3,533

Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.

a. Chứng minh tứ giác IEKB nội tiếp.

b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).

c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).

d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

a. Ta có: \(\widehat {AKB} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn đường kinh AB)

Tứ giác IEKB có: \(\widehat {AKB} = 90^\circ = \widehat {EKB};\widehat {EIB} = 90^\circ \)

Có tổng 2 góc đối \(\widehat {EKB} + \widehat {EIB} = 90^\circ + 90^\circ = 180^\circ \)

Tứ giác IEKB nội tiếp đường tròn đường kính EB

b. Xét ∆AME và ∆AKM: \(\widehat {MAE}\) chung; \(\widehat {AME} = \widehat {AKM}\) (góc nội tiếp cùng chắn 2 cung AM = AN)

∆AME  ∆AKM(g.g)

\( \Rightarrow \frac{{AM}}{{AK}} = \frac{{AE}}{{AM}}\) (hai cạnh tương ứng tỉ lệ) \( \Rightarrow A{M^2} = AE.AK\)

c. Áp dụng hệ thức lượng vào ∆ANB vuông tại N, đường cao NI AB ta có:

\(BI.BA = N{B^2}\)

Và ta có \(AE.AK = A{M^2} = A{N^2}\) (chứng minh câu b và AM = AN, tính chất đường kính và dây cung)

\( \Rightarrow AE.AK + BI.BA = A{N^2} + N{B^2} = A{B^2}\) (áp dụng Pytago vào ∆ANB)

   \( = {\left( {2R} \right)^2} = 4{R^2}\).

Vậy \(AE.AK + BI.BA = 4{R^2}\).

d. ∆MIO vuông tại I, áp dụng định lí Pytago ta có: \(O{I^2} + M{I^2} = O{M^2} = {R^2}\)

Ta có: \({\left( {MI - IO} \right)^2} \ge 0 \Leftrightarrow 2M{I^2} + 2I{O^2} \ge M{I^2} + I{O^2} + 2MI.IO = {\left( {MI + IO} \right)^2}\)

\( \Rightarrow MI + IO \le \sqrt {2\left( {M{I^2} + I{O^2}} \right)} = R\sqrt 2 \)

Chu vi tam giác MIO là P = MI + IO + MO ≤ \(R\sqrt 2 + R\).

Chu vi P đạt giá trị lớn nhất bằng \(R\sqrt 2 + R\) khi MI + IO = \(R\sqrt 2 \) hay MI = IO = \(\frac{{R\sqrt 2 }}{2}\).

Vậy điểm I nằm trên AO sao cho IO = \(\frac{{R\sqrt 2 }}{2}\) thì chu vi ∆MIO đạt GTLN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 12/07/2024 38,180

Câu 2:

Cho ∆ABC có a = 7, b = 8, c = 5. Tính số đo góc A, diện tích S của tam giác ABC, đường cao kẻ từ đỉnh A là ha và bán kính R của đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 12/07/2024 19,923

Câu 3:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 12/07/2024 11,701

Câu 4:

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Xem đáp án » 12/07/2024 10,001

Câu 5:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 12/07/2024 8,247

Câu 6:

Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.

a. Chứng minh CK = BH.tanBAC.

b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).

Xem đáp án » 12/07/2024 6,250

Câu 7:

Cho ∆ABC có BC = a, CA = b, AB = c.

Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).

Xem đáp án » 12/07/2024 6,001

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store