Câu hỏi:
12/07/2024 9,937Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải:
Áp dụng định lí côsin ta có:
\({a^2} = {b^2} + {c^2} - 2bc.cosA = {7^2} + {5^2} - 2.7.5.\frac{3}{5} = 32 \Rightarrow a = \sqrt {32} = 4\sqrt 2 \)
Ta có: \(0^\circ < \widehat A < 180^\circ \Rightarrow \sin A > 0\)
\({\sin ^2}A + {\cos ^2}A = 1 \Rightarrow \sin A = \sqrt {1 - {{\cos }^2}A} = \sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}} = \frac{4}{5}\)
Áp dụng hệ thức lượng trong tam giác
+) \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.7.5.\frac{4}{5} = 14\)
Ta có: \(\frac{a}{{\sin A}} = 2R \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{4\sqrt 2 }}{{2.\frac{4}{5}}} = \frac{{5\sqrt 2 }}{2}\)
+) \(p = \frac{{a + b + c}}{2} = \frac{{4\sqrt 2 + 7 + 5}}{2} = 6 + 2\sqrt 2 \)
\(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14}}{{6 + 2\sqrt 2 }} = \frac{{14.\left( {6 - 2\sqrt 2 } \right)}}{{\left( {6 + 2\sqrt 2 } \right)\left( {6 - 2\sqrt 2 } \right)}} = \frac{{28\left( {3 - \sqrt 2 } \right)}}{{28}} = 3 - \sqrt 2 \)
Vậy S = 14; \(R = \frac{{5\sqrt 2 }}{2};r = 3 - \sqrt 2 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:
a) ∆AOB cân tại O.
b) ∆ABD = ∆BAC.
c) EC = ED.
d) OE là đường trung trực chung của AB và CD.
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Cho ∆ABC vuông tại B. Lấy M trên AC. Kẻ AH, CK vuông góc với BM lần lượt tại H và K.
a. Chứng minh CK = BH.tanBAC.
b. Chứng minh \(\frac{{MC}}{{MA}} = \frac{{BH.{{\tan }^2}BAC}}{{BK}}\).
Câu 6:
Cho ∆ABC có BC = a, CA = b, AB = c.
Chứng minh rằng \({b^2} - {c^2} = a\left( {b.cosC - c.cosB} \right)\).
về câu hỏi!