Câu hỏi:

12/07/2024 15,126

Cho ∆ABC biết b = 7, c = 5, \(\cos A = \frac{3}{5}\). Tính S, R, r.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Áp dụng định lí sin ta có:

\({a^2} = {b^2} + {c^2} - 2bc.cosA = {7^2} + {5^2} - 2.7.5.\frac{3}{5} = 32 \Rightarrow a = \sqrt {32} = 4\sqrt 2 \)

Ta có: \(0^\circ < \widehat A < 180^\circ \Rightarrow \sin A > 0\)

\({\sin ^2}A + {\cos ^2}A = 1 \Rightarrow \sin A = \sqrt {1 - {{\cos }^2}A} = \sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}}  = \frac{4}{5}\)

Áp dụng hệ thức lượng trong tam giác

+) \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.7.5.\frac{4}{5} = 14\)

Ta có: \(\frac{a}{{\sin A}} = 2R \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{4\sqrt 2 }}{{2.\frac{4}{5}}} = \frac{{5\sqrt 2 }}{2}\)

+) \(p = \frac{{a + b + c}}{2} = \frac{{4\sqrt 2  + 7 + 5}}{2} = 6 + 2\sqrt 2 \)

\(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14}}{{6 + 2\sqrt 2 }} = \frac{{14.\left( {6 - 2\sqrt 2 } \right)}}{{\left( {6 + 2\sqrt 2 } \right)\left( {6 - 2\sqrt 2 } \right)}} = \frac{{28\left( {3 - \sqrt 2 } \right)}}{{28}} = 3 - \sqrt 2 \)

Vậy S = 14; \(R = \frac{{5\sqrt 2 }}{2};r = 3 - \sqrt 2 \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Media VietJack

a) ABCD là hình thang cân 

\( \Rightarrow \widehat {BCD} = \widehat {ADC} \Leftrightarrow \widehat {OCD} = \widehat {ODC}\)

\(\Delta ODC,\widehat {OCD} = \widehat {ODC}\)

ΔODC cân tại O OC = OD

Mà AD = BC (ABCD là hình thang cân) OA = OB ΔOAB cân tại O

b) ABCD là hình thang cân

\( \Rightarrow \widehat {BAD} = \widehat {ABC}\)

Xét ∆BAD và ∆ABC: BA chung; AD = BC; \(\widehat {BAD} = \widehat {ABC} \Rightarrow \Delta BAD = \Delta ABC\)

c) ∆BAD = ∆ABC \( \Rightarrow \widehat {{D_1}} = \widehat {{C_1}}\)

Mà \(\widehat {ADC} = \widehat {BCD} \Rightarrow \widehat {{D_2}} = \widehat {{C_2}}\)

ΔDEC cân tại E

d) EC = ED

Mà AC = BD (ABCD là hình thang cân)

EA = EB

Lại có OA = OB

OE là đường trung trực AB

OD = OC; EC = ED

OE là đường trung trực CD.

Lời giải

Lời giải:

Media VietJack

Theo hệ quả của định lí côsin ta có:

\[\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{8^2} + {5^2} - {7^2}}}{{2.8.5}} = \frac{1}{2}\]

 \( \Rightarrow \widehat A = 60^\circ \).

Diện tích tam giác ABC là \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5.\sin 60^\circ = 10\sqrt 3 \).

Vì \(S = \frac{1}{2}a{h_a}\) nên \({h_a} = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{7} = \frac{{20\sqrt 3 }}{7}\)

Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{7.8.5}}{{4.10\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay