Câu hỏi:
12/07/2024 3,462Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có \(3\overrightarrow {MA} + 4\overrightarrow {MB} = \vec 0\)
\( \Leftrightarrow 3\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + 4\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) = \vec 0\)
\( \Leftrightarrow 7\overrightarrow {MG} + 3\left( {\overrightarrow {GA} + \overrightarrow {GB} } \right) + \overrightarrow {GB} = \vec 0\)
\( \Leftrightarrow 7\overrightarrow {MG} + 3\overrightarrow {CG} + \overrightarrow {GB} = \vec 0\)
\( \Leftrightarrow 7\overrightarrow {MG} + 2\overrightarrow {CG} + \overrightarrow {CB} = \vec 0\)
\( \Leftrightarrow 7\overrightarrow {MG} = 2\overrightarrow {GC} + \overrightarrow {BC} \) (1)
Lại có \(\overrightarrow {NB} - 3\overrightarrow {NC} = \vec 0\)
\( \Leftrightarrow \overrightarrow {NG} + \overrightarrow {GB} - 3\left( {\overrightarrow {NG} + \overrightarrow {GC} } \right) = \vec 0\)
\( \Leftrightarrow - 2\overrightarrow {NG} + \overrightarrow {GB} + 3\overrightarrow {CG} = \vec 0\)
\( \Leftrightarrow - 2\overrightarrow {NG} + \overrightarrow {CB} + 2\overrightarrow {CG} = \vec 0\)
\( \Leftrightarrow - 2\overrightarrow {NG} = \overrightarrow {BC} + 2\overrightarrow {GC} \) (2)
Từ (1), (2), suy ra \(7\overrightarrow {MG} = - 2\overrightarrow {NG} \).
\( \Leftrightarrow 7\overrightarrow {GM} = - 2\overrightarrow {GN} \).
\( \Leftrightarrow \overrightarrow {GM} = \frac{{ - 2}}{7}\overrightarrow {GN} \).
Suy ra \(\overrightarrow {GM} ,\,\,\overrightarrow {GN} \) cùng phương.
Vậy ba điểm M, G, N thẳng hàng, với G là trọng tâm tam giác ABC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 4:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
về câu hỏi!