Câu hỏi:
12/07/2024 6,360Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
Ta có \(3\overrightarrow {MA} + 4\overrightarrow {MB} = \vec 0\)
\( \Leftrightarrow 3\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right) + 4\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right) = \vec 0\)
\( \Leftrightarrow 7\overrightarrow {MG} + 3\left( {\overrightarrow {GA} + \overrightarrow {GB} } \right) + \overrightarrow {GB} = \vec 0\)
\( \Leftrightarrow 7\overrightarrow {MG} + 3\overrightarrow {CG} + \overrightarrow {GB} = \vec 0\)
\( \Leftrightarrow 7\overrightarrow {MG} + 2\overrightarrow {CG} + \overrightarrow {CB} = \vec 0\)
\( \Leftrightarrow 7\overrightarrow {MG} = 2\overrightarrow {GC} + \overrightarrow {BC} \) (1)
Lại có \(\overrightarrow {NB} - 3\overrightarrow {NC} = \vec 0\)
\( \Leftrightarrow \overrightarrow {NG} + \overrightarrow {GB} - 3\left( {\overrightarrow {NG} + \overrightarrow {GC} } \right) = \vec 0\)
\( \Leftrightarrow - 2\overrightarrow {NG} + \overrightarrow {GB} + 3\overrightarrow {CG} = \vec 0\)
\( \Leftrightarrow - 2\overrightarrow {NG} + \overrightarrow {CB} + 2\overrightarrow {CG} = \vec 0\)
\( \Leftrightarrow - 2\overrightarrow {NG} = \overrightarrow {BC} + 2\overrightarrow {GC} \) (2)
Từ (1), (2), suy ra \(7\overrightarrow {MG} = - 2\overrightarrow {NG} \).
\( \Leftrightarrow 7\overrightarrow {GM} = - 2\overrightarrow {GN} \).
\( \Leftrightarrow \overrightarrow {GM} = \frac{{ - 2}}{7}\overrightarrow {GN} \).
Suy ra \(\overrightarrow {GM} ,\,\,\overrightarrow {GN} \) cùng phương.
Vậy ba điểm M, G, N thẳng hàng, với G là trọng tâm tam giác ABC.
Đã bán 187
Đã bán 1,3k
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Câu 5:
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Câu 6:
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận