Câu hỏi:
29/05/2023 237
Cho \[{a^3} + {b^3} + {c^3} = 3abc\]. Tính giá trị biểu thức: \[A = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right)\].
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
Ta có \[{a^3} + {b^3} + {c^3} \ge 3\sqrt[3]{{{a^3}{b^3}{c^3}}} = 3abc\]
Dấu “=” xảy ra \( \Leftrightarrow \) a = b = c
Ta có: \[{a^3} + {b^3} + {c^3} = 3abc\]
\[ \Rightarrow \] a = b = c
\[ \Rightarrow A = \left( {1 + \frac{a}{b}} \right)\left( {1 + \frac{b}{c}} \right)\left( {1 + \frac{c}{a}} \right) = 2.2.2 = 8\].
Vậy giá trị của biểu thức A bằng 8.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Đặt A = \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + \frac{1}{{32}} + \frac{1}{{64}} + \frac{1}{{128}} + \frac{1}{{256}}\)
\( \Rightarrow \) 2A = \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + \frac{1}{{32}} + \frac{1}{{64}} + \frac{1}{{128}}\)
\( \Rightarrow \) 2A − A = 1 − \(\frac{1}{{256}}\)
\( \Rightarrow \) A = \(\frac{{255}}{{256}}\)
Lời giải
Lời giải:
Tổng của hai số gấp 5 lần bé nghĩa là số lớn gấp 4 lần số bé.
Ta có sơ đồ:
Theo sơ đồ, hiệu số phần bằng nhau là:
4 − 1 = 3 (phần)
Số lớn là : (705 : 3) × 4 = 940
Số bé là : 940 − 705 = 235
Đáp số: Số lớn: 940;
Số bé: 235.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.