Câu hỏi:

13/07/2024 5,884

Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Gọi M và N lần lượt là trung điểm của OB và CD.

a) CMR: \(\widehat {AMN} = 90^\circ \). Từ đó suy ra bốn điểm A, M, N, D cùng thuộc một đường tròn.

b) So sánh AN và MD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Gọi M và N lần lượt  (ảnh 1)

a)

Kẻ NH vuông góc với DO

Ta có ABCD là hình vuông AC vuông góc với BD

Mà N là trung điểm của DC, NH vuông góc với DO

NH \({\rm{//}}\) OC

Do đó, NH là đường trung bình

Mà M là trung điểm OB (gt)

Suy ra H là trung điểm OD

\(NH = \frac{1}{2}OC = OM\)

Suy ra HM = OA

Xét tam giác OMA và tam giác HNM có:

\(\widehat H = \widehat O = 90^\circ \)

NH = MO

HM = OA

Do đó tam giác OMA và tam giác HNM bằng nhau

\( \Rightarrow \widehat {OAM} = \widehat {HMN}\)

\( \Rightarrow \widehat {AMN} = \widehat {AMO} + \widehat {HMN} = \widehat {AMO} + \widehat {OAM} = 90^\circ \) (đcpcm).

Gọi I là trung điểm của AN

Tam giác AMN vuông tại M \(MI = \frac{1}{2}AN = AI\)

Tam giác ADN vuông tại D \(DI = \frac{1}{2}AN = AI\)

Suy ra IA = IM = IN = ID

Do đó, 4 điểm A, M, N, D cùng thuộc đường tròn tâm I.

b)

Xét đường tròn ngoại tiếp tứ giác AMND

Có AN là đường kính và DM là dây nên AN > DM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1. Trâu ơi ta bảo trâu này,

Trâu ra ngoài ruộng trâu cày với ta.

2. Núi cao chi lắm núi ơi,

Núi che mặt trời chẳng thấy người thương.

3. Núi cao bởi có đất bồi, 

Núi chê đất thấp, núi ngồi ở đâu ?

4. Muôn dòng sông đổ biển sâu

Biển chê sông nhỏ biển đâu nước còn.

5. Khăn thương nhớ ai

    Khăn rơi xuống đất

    Khăn thương nhớ ai

    Khăn vắt lên vai

    Khăn thương nhớ ai

    Khăn chùi nước mắt...

6. Tôm đi chạng vạng, cá đi rạng đông

7. Bầu ơi thương lấy bí cùng– Tuy rằng khác giống nhưng chung một giàn.

8. Núi cao chi lắm núi ơi– Núi che mặt trời chẳng thấy người thương.

9. Bác giun đào đất suốt ngày

Hôm nay chết dưới gốc cây sau nhà

10. Thân gầy guộc, lá mong manh

Mà sao nên luỹ, nên thành tre ơi?

Lời giải

Điều kiện xác định: \(\left\{ \begin{array}{l}x \ne \pm 2\\x \ne 0\end{array} \right.\)

a)

\(\begin{array}{l}P = \left( {\frac{{{x^2}}}{{{x^3} - 4x}} + \frac{6}{{6 - 3x}} + \frac{1}{{x + 2}}} \right):\left( {x - 2 + \frac{{10 - {x^2}}}{{x + 2}}} \right)\\ = \left( {\frac{{{x^2}}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{6}{{3\left( {x - 2} \right)}} + \frac{1}{{x + 2}}} \right):\frac{{{x^2} - 4 + 10 - {x^2}}}{{x - 2}}\\ = \left( {\frac{{{x^2}}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} - \frac{{2x\left( {x + 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{x\left( {x - 2} \right)}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}}} \right):\frac{6}{{x - 2}}\\ = \frac{{{x^2} - 2{x^2} - 4x + {x^2} - 2x}}{{x\left( {x - 2} \right)\left( {x + 2} \right)}}:\frac{6}{{x - 2}}\\ = \frac{{ - 6x}}{{6x\left( {x + 2} \right)}} = \frac{{ - 1}}{{x + 2}}\end{array}\)

b)

Khi \(\left| x \right| = \frac{3}{4}\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{3}{4}\\x = - \frac{3}{4}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}P = - \frac{4}{{11}}\\P = - \frac{4}{5}\end{array} \right.\)

c)

Để P = 7

\(\begin{array}{l} \Leftrightarrow \frac{{ - 1}}{{x + 2}} = 7\\ \Leftrightarrow 7\left( {x + 2} \right) = - 1\\ \Leftrightarrow 7x + 14 = - 1\\ \Leftrightarrow 7x = - 15\\ \Leftrightarrow x = \frac{{ - 15}}{7}\end{array}\)

d)

Để P

1 x + 2

x + 2 Ư(1) = {±1}

x {–3; –1}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP