Câu hỏi:
13/07/2024 1,552
Cho x + y ≥ 6; x, y > 0. Tìm min của P = 5x + 3y + \(\frac{{10}}{x}\,\, + \,\,\frac{8}{y}\).
Cho x + y ≥ 6; x, y > 0. Tìm min của P = 5x + 3y + \(\frac{{10}}{x}\,\, + \,\,\frac{8}{y}\).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Áp dụng bất đẳng thức Cô-si ta có:
P = 5x + 3y + \(\frac{{10}}{x}\, + \,\frac{8}{y}\) = \(\left( {5x + \frac{{10}}{x}} \right) + \left( {3y + \frac{8}{y}} \right)\)≥ \(2\sqrt {5x\, \cdot \,\frac{{10}}{x}\,} \, + \,2\sqrt {3y\, \cdot \,\frac{8}{y}\,} \)
= \(2\sqrt {50\,} + \,2\sqrt {24\,} \, = \,4\sqrt 6 \, + 10\sqrt 2 \).
Vậy Pmin = \(4\sqrt 6 \, + 10\sqrt 2 \) khi \(\left\{ \begin{array}{l}5x\,\, = \,\,\frac{{10}}{x}\\3y\,\, = \,\,\frac{8}{y}\,\end{array} \right.\,\,hay\,\,\left\{ \begin{array}{l}{x^2}\, = \,2\\{y^2}\, = \,\frac{8}{3}\,\end{array} \right.\,\).
Vì x, y > 0 nên: \(\left\{ \begin{array}{l}x\, = \,\sqrt 2 \\y = \,\frac{{2\sqrt 6 }}{3}\,\end{array} \right.\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta thấy trong 3 số thì số b là nhỏ nhất
b kém a 10 lần
b kém c 100 lần
Tổng a + b + c = 100b + b + 10b = 111b = 221,778
Suy ra b = 1,998
Do đó số a là 19,98; số c là: 199,8
Vậy số thập phân a cần tìm là 19,98.
Lời giải
Hai xe đầu chở được số tạ hàng là : 35 . 2 = 70 (tạ hàng) .
Ba xe sau chở được số tạ hàng là : 45 . 3 = 135 (tạ hàng) .
Trung bình mỗi xe chở được số tạ hàng là : (70 + 135) : 5 = 41 (tạ hàng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.