Câu hỏi:
14/06/2023 167Tìm giá trị lớn nhất của biểu thức: \[A = \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}}\].
Biết a + b + c = 6.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Áp dụng bất đẳng thức Cô-si ta có:
• \[{(a + b)^2} \ge 4ab\]\[ \Leftrightarrow \frac{{a + b}}{4} \ge \frac{{ab}}{{a + b}}\,\,\,\,\,(1)\]
• \[{(b + c)^2} \ge 4bc\]\[ \Leftrightarrow \frac{{b + c}}{4} \ge \frac{{bc}}{{b + c}}\,\,\,\,\,(2)\]
• \[{(c + a)^2} \ge 4ac\]\[ \Leftrightarrow \frac{{c + a}}{4} \ge \frac{{ca}}{{c + a}}\,\,\,\,\,(3)\]
Cộng 3 vế (1); (2) và (3) ta có:
\[\frac{{a + b}}{4} + \frac{{b + c}}{4} + \frac{{c + a}}{4} \ge \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}}\]
Hay \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{(a + b) + (b + c) + (c + a)}}{4}\]
Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{2(a + b + c)}}{4}\]
Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{a + b + c}}{2} = \frac{6}{2} = 3\]
Do đó, giá trị lớn nhất của A = 3 Û a = b = c = 2.
Vậy giá trị lớn nhất của A = 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
12 người làm xong một công việc trong 4 ngày. Hỏi 16 người làm xong công việc đó trong bao nhiêu ngày? (Biết rằng mức làm của mỗi người như nhau).
Câu 2:
Câu 3:
Mảnh vườn hình chữ nhật có chiều rộng bằng 8 m và diện tích bằng 120 m2. Tính chu vi hình chữ nhật đó.
Câu 4:
Tìm tất cả các cặp số nguyên (x; y) thảo mãn 3x2 + 3xy – 17 = 7x – 2y.
Câu 5:
Câu 7:
Số học sinh các lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với các số 11; 12; 13; 14. Biết hai lần số học sinh lớp 7B nhiều hơn số học sinh lớp 7A là 39 em. Tính số học sinh mỗi lớp.
về câu hỏi!