Câu hỏi:

14/06/2023 274

Tìm giá trị lớn nhất của biểu thức: \[A = \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}}\].

Biết a + b + c = 6.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dụng bất đẳng thức Cô-si ta có:

\[{(a + b)^2} \ge 4ab\]\[ \Leftrightarrow \frac{{a + b}}{4} \ge \frac{{ab}}{{a + b}}\,\,\,\,\,(1)\]

\[{(b + c)^2} \ge 4bc\]\[ \Leftrightarrow \frac{{b + c}}{4} \ge \frac{{bc}}{{b + c}}\,\,\,\,\,(2)\]

\[{(c + a)^2} \ge 4ac\]\[ \Leftrightarrow \frac{{c + a}}{4} \ge \frac{{ca}}{{c + a}}\,\,\,\,\,(3)\]

Cộng 3 vế (1); (2) và (3) ta có:

\[\frac{{a + b}}{4} + \frac{{b + c}}{4} + \frac{{c + a}}{4} \ge \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}}\]

Hay \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{(a + b) + (b + c) + (c + a)}}{4}\]

Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{2(a + b + c)}}{4}\]

Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{a + b + c}}{2} = \frac{6}{2} = 3\]

Do đó, giá trị lớn nhất của A = 3 Û a = b = c = 2.

Vậy giá trị lớn nhất của A = 3.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một người làm xong công việc hết số ngày là:

4 × 12 = 48 (ngày)

16 người làm xong công việc hết số ngày là:

48 : 16 = 3 (ngày)

Đáp số: 3 ngày.

Lời giải

Gọi số học sinh của ba lớp 7A, 7B, 7C lần lượt là x, y, z (học sinh) (x, y, z Î*)

Vì số học sinh của ba lớp 7A, 7B, 7C tỉ lệ với 21, 20, 22 nên:

\[\frac{x}{{21}} = \frac{y}{{20}} = \frac{z}{{22}}\]

Vì số học sinh lớp 7C nhiều hơn lớp 7A 2 học sinh nên: z – x = 2

Áp dụng dãy tỉ số bằng nhau ta có:

\[\frac{x}{{21}} = \frac{y}{{20}} = \frac{z}{{22}} = \frac{{z - x}}{{22 - 21}} = 2\]

Suy ra x = 21. 2 = 42 (tmđk), y = 20. 2 = 40 (tmđk), z = 22. 2 = 44 (tmđk)

Vậy số học sinh lớp 7A, 7B, 7C lần lượt là 42, 40, 44 học sinh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay