Câu hỏi:

14/06/2023 139

Tìm hai số tự nhiên a, b sao cho [a, b] + (a, b) = 55.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi (a, b) = d, a = dm, b = dn, (m, n) = 1, m, n Î*

Þ [a, b] = a . b : (a, b)

Theo đề bài ta có:

[a, b] + (a, b) = 55

Thay vào ta có:

dm.dn : d + d = 55

d.mn + d = 55

d(mn + 1) = 55

Vì d, m, n ϵ N*. Giả sử a > b thì m > n, ta có bảng sau:

d

mn + 1

m

n

a

b

1

55

54

1

54 (TM)

1 (TM)

5

11

10

1

50 (TM)

5 (TM)

5

2

25

10

25 (TM)

10 (TM)

11

5

4

1

44 (TM)

11 (TM)

Vậy (a, b) = {(54; 1); (50; 5); (25; 10); (44; 11)}.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

12 người làm xong một công việc trong 4 ngày. Hỏi 16 người làm xong công việc đó trong bao nhiêu ngày? (Biết rằng mức làm của mỗi người như nhau).

Xem đáp án » 12/07/2024 38,872

Câu 2:

Số học sinh lớp 7A, 7B, 7C tương ứng tỉ lệ với 21, 20, 22. Tính số học sinh của mỗi lớp. Biết rằng lớp 7C nhiều hơn lớp 7A 2 học sinh.

Xem đáp án » 12/07/2024 13,928

Câu 3:

Mảnh vườn hình chữ nhật có chiều rộng bằng 8 m và diện tích bằng        120 m2. Tính chu vi hình chữ nhật đó.

Xem đáp án » 12/07/2024 8,541

Câu 4:

Tìm tất cả các cặp số nguyên (x; y) thảo mãn 3x2 + 3xy – 17 = 7x – 2y.

Xem đáp án » 12/07/2024 6,779

Câu 5:

Số học sinh các lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với các số 11; 12; 13; 14. Biết hai lần số học sinh lớp 7B nhiều hơn số học sinh lớp 7A là 39 em. Tính số học sinh mỗi lớp.

Xem đáp án » 12/07/2024 4,295

Câu 6:

Cho ΔABC có AB = AC. Gọi H là trung điểm của cạnh BC. Chứng minh:

a) AH là phân giác của góc \[\widehat {BAC}\].

b) AH  BC.

Xem đáp án » 12/07/2024 4,167

Câu 7:

Cho biểu thức A = 1 + 3 + 32 + 33 + 34 + ….+ 399. Chứng minh rằng: A chia hết cho 4

Xem đáp án » 12/07/2024 3,332
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua