Câu hỏi:
14/06/2023 635Cho \[A = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{63}}\]. Chứng minh rằng A > 3.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \[A = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{63}}\]
\[ = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{63}} + \frac{1}{{64}} - \frac{1}{{64}}\]
\[ = \left( {1 + \frac{1}{2}} \right) + \left( {\frac{1}{3} + \frac{1}{4}} \right) + \left( {\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}} \right) + ... + \left( {\frac{1}{{33}} + \frac{1}{{34}} + ... + \frac{1}{{64}}} \right) - \frac{1}{{64}}\]
\[ \Rightarrow A > 1 + \frac{1}{2} + 2 \times \frac{1}{4} + 4 \times \frac{1}{8} + ... + 32 \times \frac{1}{{64}} - \frac{1}{{64}}\]
\[ \Rightarrow A > 1 + \left( {\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}} \right) - \frac{1}{{64}}\]
\[ \Rightarrow A > 1 + 3 - \frac{1}{{64}}\]
\[ \Rightarrow A > 3 + \left( {1 - \frac{1}{{64}}} \right)\]
Mà \[1 - \frac{1}{{64}} > 0\] nên A > 3
Vậy A > 3
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
12 người làm xong một công việc trong 4 ngày. Hỏi 16 người làm xong công việc đó trong bao nhiêu ngày? (Biết rằng mức làm của mỗi người như nhau).
Câu 2:
Câu 3:
Mảnh vườn hình chữ nhật có chiều rộng bằng 8 m và diện tích bằng 120 m2. Tính chu vi hình chữ nhật đó.
Câu 4:
Tìm tất cả các cặp số nguyên (x; y) thảo mãn 3x2 + 3xy – 17 = 7x – 2y.
Câu 5:
Câu 7:
Số học sinh các lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với các số 11; 12; 13; 14. Biết hai lần số học sinh lớp 7B nhiều hơn số học sinh lớp 7A là 39 em. Tính số học sinh mỗi lớp.
về câu hỏi!