Câu hỏi:

12/07/2024 1,380

Tìm tất cả các cặp số nguyên thỏa mãn:

(x – 2019)2 = y4 – 6y3 + 11y2 – 6y

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Biến đổi vế phải ta có:

VP = y4 – 6y3 + 11y2 – 6y = (y – 1) (y – 2) (y – 3) = (x – 2019)2

Þ y – 1, y – 3 là 3 số nguyên liên tiếp.

Mà tích của 3 số nguyên liên tiếp không thể là số chính phương

Þ x – 2019 = 0

y – 1 = 0 hoặc y – 2 = 0 hoặc y – 3 = 0

Vậy ta có các cặp x, y là (2019 : 1) hoặc (2019 : 2) hoặc (2019 : 3).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

12 người làm xong một công việc trong 4 ngày. Hỏi 16 người làm xong công việc đó trong bao nhiêu ngày? (Biết rằng mức làm của mỗi người như nhau).

Xem đáp án » 12/07/2024 39,508

Câu 2:

Số học sinh lớp 7A, 7B, 7C tương ứng tỉ lệ với 21, 20, 22. Tính số học sinh của mỗi lớp. Biết rằng lớp 7C nhiều hơn lớp 7A 2 học sinh.

Xem đáp án » 12/07/2024 15,448

Câu 3:

Mảnh vườn hình chữ nhật có chiều rộng bằng 8 m và diện tích bằng        120 m2. Tính chu vi hình chữ nhật đó.

Xem đáp án » 12/07/2024 8,869

Câu 4:

Tìm tất cả các cặp số nguyên (x; y) thảo mãn 3x2 + 3xy – 17 = 7x – 2y.

Xem đáp án » 12/07/2024 7,022

Câu 5:

Số học sinh các lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với các số 11; 12; 13; 14. Biết hai lần số học sinh lớp 7B nhiều hơn số học sinh lớp 7A là 39 em. Tính số học sinh mỗi lớp.

Xem đáp án » 12/07/2024 4,527

Câu 6:

Cho ΔABC có AB = AC. Gọi H là trung điểm của cạnh BC. Chứng minh:

a) AH là phân giác của góc \[\widehat {BAC}\].

b) AH  BC.

Xem đáp án » 12/07/2024 4,484

Câu 7:

Cho biểu thức A = 1 + 3 + 32 + 33 + 34 + ….+ 399. Chứng minh rằng: A chia hết cho 4

Xem đáp án » 12/07/2024 3,472
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua