Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đặt x2 + x + 1991 = a2 (với a > 0)
Û 4x2 + 4x + 7964 = 4a2
Û (2x + 1)2 + 7963 = 4a2
Û (2x + 1)2 − 4a2 = 7963
Û (2x + 1 − 2a)(2x + 1 + 2a) = −7963
Mà 7963 là số nguyên tố nên suy ra
+) TH1: \(\left\{ \begin{array}{l}2x + 1 - 2a = - 1\\2x + 1 + 2a = 7963\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x - a = - 1\\x + a = 3981\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1990\\a = 1991\end{array} \right.\)
+) TH2: \(\left\{ \begin{array}{l}2x + 1 - 2a = - 7963\\2x + 1 + 2a = 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x - a = - 3982\\x + a = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1991\\a = 1991\end{array} \right.\)
Vậy x = 1990 và x = −1991 là các giá trị của x thỏa mãn
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có MN ^ CE (gt); AB ^ CE (gt)
Þ MN // AB
Mà AB // CD (ABCD là hình bình hành) nên MN // CD
Tứ giác MNCD có MN // CD
Và MD // CN (AD // BC, M Î AD, N Î BC)
Do đó tứ giác MNCD là hình bình hành.
b) Gọi F là giao điểm của MN và EC
Hình thang AECD (EC // CD) có MF // AE // CD
Và M là trung điểm của AD (gt)
Þ F là trung điểm của EC.
ΔMEC có MF là đường trung tuyến (F là trung điểm của EC)
Và MF là đường cao (MF ^ EC)
Þ ΔMEC cân tại M.
c) Ta có AD = 2AB (gt)
AD = 2MD (M là trung điểm của AD)
Và AB = CD (ABCD là hình bình hành) Þ MD = CD
Hình bình hành MNCD có MD = CD nên là hình thoi.
Þ CM là đường phân giác \(\widehat {EMF} = \widehat {CMF}\)
Mà \(\widehat {EMF} = \widehat {AEM}\) (hai góc so le trong và AE // MF)
Và \(\widehat {CMF} = \widehat {MCD}\) (hai góc so le trong và MF // CD)
Nên \(\widehat {AEM} = \widehat {MCD}\).
Ta có \(\widehat {AEM} = \widehat {MCD};\;2\widehat {MCD} = \widehat {NCD}\) (CM là tia phân giác của \(\widehat {NCD}\))
Và \(\widehat {NCD} = \widehat {BAD}\) (ABCD là hình bình hành)
\( \Rightarrow 2\widehat {AEM} = \widehat {BAD}\).
Lời giải
Chữ số có năm chữ số cần tìm có dạng: \(\overline {abcde} \)
Vì số cần tìm là số chẵn nên e có 2 cách chọn: 4, 8
Chọn chữ số a có 4 cách chọn
Chọn chữ số b có 3 cách chọn
Chọn chữ số c có 2 cách chọn
Chọn chữ số d có 1 cách chọn
Vậy có tất cả 2.4.3.2.1 = 48 số có thể lập được
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.