Câu hỏi:

14/06/2023 244

Cho tứ diện gần đều ABCD, biết AB = CD = 5, \(AD = BC = \sqrt {41} \). Tính sin góc giữa hai đường thẳng: B và CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện gần đều ABCD, biết AB = CD = 5, AD = BC = căn bậc hai 41. Tính sin góc (ảnh 1)

Gọi I, J, K, P lần lượt là trung điểm của AD, AC, BC, BD

Khi đó, AB // IP // JK, CD // IJ // KP

\( \Rightarrow \left( {\widehat {AB;\;CD}} \right) = \left( {\widehat {IP;\;KP}} \right)\)

Ta có: \(KP = \frac{1}{2}CD = \frac{5}{2};\;IP = \frac{1}{2}AB = \frac{5}{2}\)

\(A{K^2} = \frac{{A{B^2} + A{C^2}}}{2} - \frac{{B{C^2}}}{4} = \frac{{25 + 34}}{2} - \frac{{41}}{4} = \frac{{77}}{4} = D{K^2}\)

Tam giác AKD cân tại K có KI là trung tuyến

Þ KI ^ AD \( \Rightarrow I{K^2} = A{K^2} - A{I^2} = \frac{{77}}{4} - \frac{{41}}{4} = 9\)

\(\cos \widehat {IPK} = \frac{{I{P^2} + K{P^2} - I{K^2}}}{{2IP\,.\,KP}} = \frac{{\frac{{25}}{4} + \frac{{25}}{4} - 9}}{{2\,.\,\frac{5}{2}\,.\,\frac{5}{2}}} = \frac{7}{{25}} > 0\)

\( \Rightarrow \widehat {IPK} < 90^\circ \)

\( \Rightarrow \left( {\widehat {AB;\;CD}} \right) = \left( {\widehat {IP;\;KP}} \right) = \widehat {IPK}\)

\( \Rightarrow \sin \left( {\widehat {AB;\;CD}} \right) = \sin \widehat {IPK} = \sqrt {1 - {{\left( {\frac{7}{{25}}} \right)}^2}} = \frac{{24}}{{25}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình bình hành ABCD với AD  2AB. Từ C vẽ CE vuông góc với AB. Nối E với (ảnh 1)

a) Ta có MN ^ CE (gt); AB ^ CE (gt)

Þ MN // AB

Mà AB // CD (ABCD là hình bình hành) nên MN // CD

Tứ giác MNCD có MN // CD

Và MD // CN (AD // BC, M Î AD, N Î BC)

Do đó tứ giác MNCD là hình bình hành.

b) Gọi F là giao điểm của MN và EC

Hình thang AECD (EC // CD) có MF // AE // CD

Và M là trung điểm của AD (gt)

Þ F là trung điểm của EC.

ΔMEC có MF là đường trung tuyến (F là trung điểm của EC)

Và MF là đường cao (MF ^ EC)

Þ ΔMEC cân tại M.

c) Ta có AD = 2AB (gt)

AD = 2MD (M là trung điểm của AD)

Và AB = CD (ABCD là hình bình hành) Þ MD = CD

Hình bình hành MNCD có MD = CD nên là hình thoi.

Þ CM là đường phân giác \(\widehat {EMF} = \widehat {CMF}\)

Mà \(\widehat {EMF} = \widehat {AEM}\) (hai góc so le trong và AE // MF)

Và \(\widehat {CMF} = \widehat {MCD}\) (hai góc so le trong và MF // CD)

Nên \(\widehat {AEM} = \widehat {MCD}\).

Ta có \(\widehat {AEM} = \widehat {MCD};\;2\widehat {MCD} = \widehat {NCD}\) (CM là tia phân giác của \(\widehat {NCD}\))

Và \(\widehat {NCD} = \widehat {BAD}\) (ABCD là hình bình hành) 

\( \Rightarrow 2\widehat {AEM} = \widehat {BAD}\).

Lời giải

Chữ số có năm chữ số cần tìm có dạng: \(\overline {abcde} \)

Vì số cần tìm là số chẵn nên e có 2 cách chọn: 4, 8

Chọn chữ số a có 4 cách chọn

Chọn chữ số b có 3 cách chọn

Chọn chữ số c có 2 cách chọn

Chọn chữ số d có 1 cách chọn

Vậy có tất cả 2.4.3.2.1 = 48 số có thể lập được

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay