Câu hỏi:
14/06/2023 514Cho tam giác ABC cân ở A có \(\widehat A = 100^\circ \). Điểm M nằm trong tam giác sao cho \(\widehat {MCB} = 20^\circ ;\;\widehat {MBC} = 30^\circ \). Tính góc MAC
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Kẻ tam giác NBC đều
Khi đó NA là tian phân giác của góc BNC và \(\widehat {BNA} = \widehat {CNA} = 30^\circ \)
Xét tam giác BMC có:
\(\widehat {BMC} = 180^\circ - \widehat {MBC} - \widehat {MCB} = 180^\circ - 30^\circ - 20^\circ = 130^\circ \)
Xét tam giác ABC có:
\(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ - \widehat {BAC}}}{2} = \frac{{180^\circ - 100^\circ }}{2} = 40^\circ \)
\( \Rightarrow \widehat {ACM} = 40^\circ - \widehat {MCB} = 40^\circ - 20^\circ = 20^\circ \)
Và \(\widehat {ABM} = 40^\circ - \widehat {MBC} = 40^\circ - 30^\circ = 10^\circ \)
Xét \(\widehat {NCM} = 60^\circ - \widehat {MCB} = 60^\circ - 20^\circ = 40^\circ \)
\( \Rightarrow \widehat {NCA} = 40^\circ - \widehat {ACM} = 40^\circ - 20^\circ = 20^\circ \)
Xét DCBM và DCNA có:
CB = CN
\(\widehat {MBC} = \widehat {ANC}\)
\(\widehat {MCB} = \widehat {ACN}\)
Suy ra DCBM = DCNA (g.c.g)
Þ CM = CA
Suy ra tam giác CMA cân tại C
\( \Rightarrow \widehat {MAC} = \widehat {AMC} = \frac{{180^\circ - \widehat {MCA}}}{2} = \frac{{180^\circ - 20^\circ }}{2} = 80^\circ \)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có MN ^ CE (gt); AB ^ CE (gt)
Þ MN // AB
Mà AB // CD (ABCD là hình bình hành) nên MN // CD
Tứ giác MNCD có MN // CD
Và MD // CN (AD // BC, M Î AD, N Î BC)
Do đó tứ giác MNCD là hình bình hành.
b) Gọi F là giao điểm của MN và EC
Hình thang AECD (EC // CD) có MF // AE // CD
Và M là trung điểm của AD (gt)
Þ F là trung điểm của EC.
ΔMEC có MF là đường trung tuyến (F là trung điểm của EC)
Và MF là đường cao (MF ^ EC)
Þ ΔMEC cân tại M.
c) Ta có AD = 2AB (gt)
AD = 2MD (M là trung điểm của AD)
Và AB = CD (ABCD là hình bình hành) Þ MD = CD
Hình bình hành MNCD có MD = CD nên là hình thoi.
Þ CM là đường phân giác \(\widehat {EMF} = \widehat {CMF}\)
Mà \(\widehat {EMF} = \widehat {AEM}\) (hai góc so le trong và AE // MF)
Và \(\widehat {CMF} = \widehat {MCD}\) (hai góc so le trong và MF // CD)
Nên \(\widehat {AEM} = \widehat {MCD}\).
Ta có \(\widehat {AEM} = \widehat {MCD};\;2\widehat {MCD} = \widehat {NCD}\) (CM là tia phân giác của \(\widehat {NCD}\))
Và \(\widehat {NCD} = \widehat {BAD}\) (ABCD là hình bình hành)
\( \Rightarrow 2\widehat {AEM} = \widehat {BAD}\).
Lời giải
Chữ số có năm chữ số cần tìm có dạng: \(\overline {abcde} \)
Vì số cần tìm là số chẵn nên e có 2 cách chọn: 4, 8
Chọn chữ số a có 4 cách chọn
Chọn chữ số b có 3 cách chọn
Chọn chữ số c có 2 cách chọn
Chọn chữ số d có 1 cách chọn
Vậy có tất cả 2.4.3.2.1 = 48 số có thể lập được
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)