Câu hỏi:
14/06/2023 316Cho tam giác ABC cân ở A có \(\widehat A = 100^\circ \). Điểm M nằm trong tam giác sao cho \(\widehat {MCB} = 20^\circ ;\;\widehat {MBC} = 30^\circ \). Tính góc MAC
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Kẻ tam giác NBC đều
Khi đó NA là tian phân giác của góc BNC và \(\widehat {BNA} = \widehat {CNA} = 30^\circ \)
Xét tam giác BMC có:
\(\widehat {BMC} = 180^\circ - \widehat {MBC} - \widehat {MCB} = 180^\circ - 30^\circ - 20^\circ = 130^\circ \)
Xét tam giác ABC có:
\(\widehat {ABC} = \widehat {ACB} = \frac{{180^\circ - \widehat {BAC}}}{2} = \frac{{180^\circ - 100^\circ }}{2} = 40^\circ \)
\( \Rightarrow \widehat {ACM} = 40^\circ - \widehat {MCB} = 40^\circ - 20^\circ = 20^\circ \)
Và \(\widehat {ABM} = 40^\circ - \widehat {MBC} = 40^\circ - 30^\circ = 10^\circ \)
Xét \(\widehat {NCM} = 60^\circ - \widehat {MCB} = 60^\circ - 20^\circ = 40^\circ \)
\( \Rightarrow \widehat {NCA} = 40^\circ - \widehat {ACM} = 40^\circ - 20^\circ = 20^\circ \)
Xét DCBM và DCNA có:
CB = CN
\(\widehat {MBC} = \widehat {ANC}\)
\(\widehat {MCB} = \widehat {ACN}\)
Suy ra DCBM = DCNA (g.c.g)
Þ CM = CA
Suy ra tam giác CMA cân tại C
\( \Rightarrow \widehat {MAC} = \widehat {AMC} = \frac{{180^\circ - \widehat {MCA}}}{2} = \frac{{180^\circ - 20^\circ }}{2} = 80^\circ \)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD với AD = 2AB. Từ C vẽ CE vuông góc với AB. Nối E với trung điểm M của AD. Từ M vẽ MF vuông góc với CE, MF cắt BC tại N.
a) Tứ giác MNCD là hình gì?
b) Tam giác EMC là tam giác gì?
c) Chứng minh: \(\widehat {BAD} = 2\widehat {AEM}\).
Câu 2:
Cho các chữ số 1, 3, 4, 7, 8. Từ năm chữ số này có thể lập được tất cả bao nhiêu số chẵn có năm chữ số khác nhau?
Câu 3:
Cho dãy số: 10; 13; 18; 26; 39; 60; … Tìm quy luật dãy số rồi viết tiếp 2 số vào dãy số.
Câu 4:
Cho hình thang cân ABCD (AB // CD) có AC vuông góc với AD biết AB = 5 cm; CD = 11 cm. Tính độ dài AD
Câu 5:
Một hình chữ nhật có chiều dài gấp 3 lần chiều rộng và có diện tích bằng 48 cm2. Tính chu vi của hình chữ nhật đó.
Câu 7:
Cho tam giác ABC có \(AB = \sqrt 5 \;cm;\;AC = 3\;cm;\;\widehat B + \widehat C = 90^\circ \). Tính độ dài đoạn thẳng BC
về câu hỏi!