Câu hỏi:

13/07/2024 953 Lưu

Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D. Chứng minh rằng:

a) COD^=90°  .

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng nửa mặt phẳng bờ AB). (ảnh 1)

Ta có OA Ax, OB By (giả thiết).

Suy ra Ax, By là các tiếp tuyến của nửa đường tròn (O) lần lượt tại A và B.

Ta có AC, MC là hai tiếp tuyến của (O) và hai tiếp tuyến này cắt nhau tại C.

Suy ra CM = CA và AOC^=COM^  (theo tính chất hai tiếp tuyến cắt nhau).

Chứng minh tương tự, ta được DM = DB và MOD^=DOB^ .

Ta có AOC^+COM^+MOD^+DOB^=180° .

2COM^+2MOD^=180°.

2COM^+MOD^=180°.

COD^=90°.

Vậy ta có điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có cos4x = 2cos22x – 1

= 2(2cos2x – 1)2 – 1

= 2(4cos4x – 4cos2x + 1) – 1

= 8cos4x – 8cos2x + 2 – 1

= 8cos4x – 8cos2x + 1.

Vậy cos4x = 8cos4x – 8cos2x + 1.

Lời giải

Ta thấy đường gấp khúc ABC và đường gấp khúc BCD có chung đoạn BC.

Mà đường gấp khúc ABC dài hơn đường gấp khúc BCD là 3cm.

Nên đoạn thẳng AB dài hơn đoạn thẳng CD là 3 cm.

Độ dài đoạn thẳng CD là: 15 – 3 = 12 (cm).

Đáp số: 12 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP