Câu hỏi:

15/06/2023 276 Lưu

Để sửa xong một đoạn đường trong 15 ngày thì cần 24 công nhân. Muốn sửa xong đoạn đường đó trong 18 ngày thì cần số công nhân là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Số người để sửa xong đoạn đường đó trong một ngày là:

15 × 24 = 360 (công nhân)

Muốn sửa xong đoạn đường đó trong 18 ngày thì cần số công nhân là:

360 : 18 = 20 (công nhân)

Đáp số: 20 công nhân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có x + y = 2 \( \Rightarrow \) x2 + 2xy + y2 = 4

\( \Rightarrow \) 2xy = 4 – (x2 + y2) = 4 – 10 = −6

\( \Rightarrow \) xy = −3.

Lại có (x + y)3 = x3 + 3x2y + 3xy2 + y3

\( \Rightarrow \) x3 + y3 = (x + y)3 – 3xy(x + y)

Vậy x3 + y3 = 23 −3. (−3).2 = 8 + 18 = 26.

Lời giải

Áp dụng bất đẳng thức Cô si cho ba số dương, ta có:

\(x + y + z \ge 3\sqrt[3]{{xyz}}\); \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 3\sqrt[3]{{\frac{1}{{xyz}}}}\)

Từ đó \(\left( {x + y + z} \right)\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) \ge 3.\sqrt[3]{{xyz}}.3.\sqrt[3]{{\frac{1}{{xyz}}}} = 9\).

Do đó \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).

Vậy \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP