Câu hỏi:

13/07/2024 1,956

Tìm nghiệm nguyên của phương trình: y2 – 5y + 62 = (y – 2)x2 + (y2 – 6y + 8)x.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

y2 – 5y + 62 = (y – 2)x2 + (y2 – 6y + 8)x

\( \Leftrightarrow \) y2 – 5y + 6 + 56 = (y – 2)x2 + (y2 – 6y + 8)x

\( \Leftrightarrow \) (y – 2)(y – 3) + 56 = (y – 2)x2 + (y – 2)(y – 4)x

\( \Leftrightarrow \) (y – 2)[x2 + (y – 4)x – (y − 3)] = 56

\( \Leftrightarrow \) (y – 2)(x2 + xy – 4x − y + 3) = 56

\( \Leftrightarrow \) (y – 2)(x2 – 4x + 3+ xy − y) = 56

\( \Leftrightarrow \) (y – 2)[(x – 1)(x – 3)+ y(x − 1)] = 56

\( \Leftrightarrow \) (y – 2)(x – 1)(x + y – 3) = 56 = 1.2.28 = 1.4.14 = 1.8.7 = 2.2.14

Nhận thấy x – 1 + y – 2 = x + y – 3 nên ta xét các trường hợp sau:

TH1: \(\left\{ \begin{array}{l}x - 1 = 1\\y - 2 = 7\\x + y - 3 = 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 9\end{array} \right.\);

TH2: \(\left\{ \begin{array}{l}x - 1 = 7\\y - 2 = 1\\x + y - 3 = 8\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 8\\y = 3\end{array} \right.\);

TH3: \(\left\{ \begin{array}{l}x - 1 = - 8\\y - 2 = 7\\x + y - 3 = - 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 7\\y = 9\end{array} \right.\);

TH4: \(\left\{ \begin{array}{l}x - 1 = 7\\y - 2 = - 8\\x + y - 3 = - 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 8\\y = - 6\end{array} \right.\);

TH5: \(\left\{ \begin{array}{l}x - 1 = - 8\\y - 2 = 1\\x + y - 3 = - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = - 7\\y = 3\end{array} \right.\);

TH6: \(\left\{ \begin{array}{l}x - 1 = 1\\y - 2 = - 8\\x + y - 3 = - 7\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = - 6\end{array} \right.\).

Vậy các cặp giá trị nguyên là nghiệm của phương trình là: (2; 9), (8; 3), (−7; 9), (8; −6), (−7; 3), (2; −6).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho x + y = 2 và x2 + y2 = 10. Tính giá trị của biểu thức x3 + y3.

Xem đáp án » 13/07/2024 7,359

Câu 2:

Cho x, y, z là ba số dương. Chứng minh \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).

Xem đáp án » 13/07/2024 4,183

Câu 3:

Một mảnh vườn hình chữ nhật có nửa chu vi là 94 m, chiều dài hơn chiều rộng 16 m. Tính diện tích của mảnh vườn đó?

Xem đáp án » 13/07/2024 3,475

Câu 4:

Tủ sách thư viện trường em có 2 ngăn: ngăn thứ nhất có số sách bằng \(\frac{2}{3}\) số sách ngăn thứ hai. Nếu xếp thêm vào ngăn thứ nhất 80 cuốn và ngăn thứ hai 40 cuốn thì số sách ngăn thứ nhất bằng \(\frac{3}{4}\) số sách ngăn thứ hai. Hỏi ban đầu mỗi ngăn tủ có bao nhiêu cuốn sách?

Xem đáp án » 13/07/2024 2,555

Câu 5:

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh M, N, P, Q cùng nằm trên một đường tròn.

Xem đáp án » 13/07/2024 2,107

Câu 6:

Vẽ hai góc kề bù \(\widehat {xOy},\widehat {yOz}\) biết \(\widehat {xOy} = 80^\circ \). Gọi Om là tia phân giác của góc xOy, On là tia phân giác của góc yOz. Tính góc mOy, nOy và mOn.

Xem đáp án » 13/07/2024 2,018

Bình luận


Bình luận