Câu hỏi:

13/07/2024 708 Lưu

Tính giá trị biểu thức: \(29\frac{1}{2} \times \frac{2}{3} + 39\frac{1}{3} \times \frac{3}{4} + \frac{5}{6}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(29\frac{1}{2} \times \frac{2}{3} + 39\frac{1}{3} \times \frac{3}{4} + \frac{5}{6}\)\( = \frac{{59}}{2} \times \frac{2}{3} + \frac{{118}}{3} \times \frac{3}{4} + \frac{5}{6}\)

\( = \frac{{59}}{3} + \frac{{59}}{2} + \frac{5}{6}\)\( = \frac{{118}}{6} + \frac{{177}}{6} + \frac{5}{6} = \frac{{300}}{6} = 50\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có x + y = 2 \( \Rightarrow \) x2 + 2xy + y2 = 4

\( \Rightarrow \) 2xy = 4 – (x2 + y2) = 4 – 10 = −6

\( \Rightarrow \) xy = −3.

Lại có (x + y)3 = x3 + 3x2y + 3xy2 + y3

\( \Rightarrow \) x3 + y3 = (x + y)3 – 3xy(x + y)

Vậy x3 + y3 = 23 −3. (−3).2 = 8 + 18 = 26.

Lời giải

Áp dụng bất đẳng thức Cô si cho ba số dương, ta có:

\(x + y + z \ge 3\sqrt[3]{{xyz}}\); \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 3\sqrt[3]{{\frac{1}{{xyz}}}}\)

Từ đó \(\left( {x + y + z} \right)\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) \ge 3.\sqrt[3]{{xyz}}.3.\sqrt[3]{{\frac{1}{{xyz}}}} = 9\).

Do đó \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).

Vậy \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP