Câu hỏi:
15/06/2023 401Cho a, b, c là 3 số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằng \(\sqrt {5a + 4} + \sqrt {5b + 4} + \sqrt {5c + 4} \ge 7\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Vì a, b, c ≥ 0; a + b + c = 1 nên a, b, c ≤ 1.
Suy ra a2 ≤ a; b2 ≤ b, c2 ≤ c.
Khi đó \(\sqrt {5a + 4} + \sqrt {5b + 4} + \sqrt {5c + 4} \)
\( = \sqrt {a + 4a + 4} + \sqrt {b + 4b + 4} + \sqrt {c + 4c + 4} \)\( \ge \sqrt {{a^2} + 4a + 4} + \sqrt {{b^2} + 4b + 4} + \sqrt {{c^2} + 4c + 4} \)
\( = \sqrt {{{\left( {a + 2} \right)}^2}} + \sqrt {{{\left( {b + 2} \right)}^2}} + \sqrt {{{\left( {c + 2} \right)}^2}} \)
\( = a + 2 + b + 2 + c + 2 = 7\).
Vậy \(\sqrt {5a + 4} + \sqrt {5b + 4} + \sqrt {5c + 4} \ge 7\).
Dấu “=” xảy ra tại a = 1; b = 0; c = 0 và các hoán vị.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho x + y = 2 và x2 + y2 = 10. Tính giá trị của biểu thức x3 + y3.
Câu 2:
Cho x, y, z là ba số dương. Chứng minh \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).
Câu 3:
Tủ sách thư viện trường em có 2 ngăn: ngăn thứ nhất có số sách bằng \(\frac{2}{3}\) số sách ngăn thứ hai. Nếu xếp thêm vào ngăn thứ nhất 80 cuốn và ngăn thứ hai 40 cuốn thì số sách ngăn thứ nhất bằng \(\frac{3}{4}\) số sách ngăn thứ hai. Hỏi ban đầu mỗi ngăn tủ có bao nhiêu cuốn sách?
Câu 4:
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh M, N, P, Q cùng nằm trên một đường tròn.
Câu 5:
Một mảnh vườn hình chữ nhật có nửa chu vi là 94 m, chiều dài hơn chiều rộng 16 m. Tính diện tích của mảnh vườn đó?
Câu 6:
Tìm nghiệm nguyên của phương trình: y2 – 5y + 62 = (y – 2)x2 + (y2 – 6y + 8)x.
Câu 7:
Vẽ hai góc kề bù \(\widehat {xOy},\widehat {yOz}\) biết \(\widehat {xOy} = 80^\circ \). Gọi Om là tia phân giác của góc xOy, On là tia phân giác của góc yOz. Tính góc mOy, nOy và mOn.
về câu hỏi!