Cho tập hợp A = {0; 1; 2; 3; 4; 5}. Có thể lập bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau?
Cho tập hợp A = {0; 1; 2; 3; 4; 5}. Có thể lập bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau?
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Số tự nhiên thỏa mãn có dạng \(\overline {abcd} \) với a, b, c, d ∈ A và đôi một khác nhau.
TH1: d = 0
Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có 5.4.3 = 60 số.
TH2: d ≠ 0 ; d có 2 cách chọn là 2, 4.
Khi đó có 4 cách chọn a (vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.
Theo quy tắc nhân có: 2 . 4 . 4 . 3 = 96 (số)
Vậy có tất cả: 96 + 60 = 156 (số).
Chọn C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có x + y = 2 \( \Rightarrow \) x2 + 2xy + y2 = 4
\( \Rightarrow \) 2xy = 4 – (x2 + y2) = 4 – 10 = −6
\( \Rightarrow \) xy = −3.
Lại có (x + y)3 = x3 + 3x2y + 3xy2 + y3
\( \Rightarrow \) x3 + y3 = (x + y)3 – 3xy(x + y)
Vậy x3 + y3 = 23 −3. (−3).2 = 8 + 18 = 26.
Lời giải
Áp dụng bất đẳng thức Cô si cho ba số dương, ta có:
\(x + y + z \ge 3\sqrt[3]{{xyz}}\); \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 3\sqrt[3]{{\frac{1}{{xyz}}}}\)
Từ đó \(\left( {x + y + z} \right)\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) \ge 3.\sqrt[3]{{xyz}}.3.\sqrt[3]{{\frac{1}{{xyz}}}} = 9\).
Do đó \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).
Vậy \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.