Câu hỏi:
13/07/2024 1,291Cho các số thực dương x, y, z thỏa mãn điều kiện x + y + z = 4 và xy + yz + zx = 5. Tìm giá trị nhỏ nhất của biểu thức: P = \(\left( {{x^3} + {y^3} + {z^3}} \right)\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Từ giả thiết ta có \(\left\{ \begin{array}{l}y + z = 4 - x\\yz = 5 - x\left( {4 - x} \right)\end{array} \right.\)
Suy ra (4 – x)2 ≥ 4[5 − x(4 − x)] ⇔ 3x2 − 8x + 4 ≤ 0⇔ \(\frac{2}{3}\) ≤ x ≤ 2.
Mặt khác (x3 + y3 + z3) = (x + y + z).(x2 + y2 + z2 – xy – yz – zx) + 3xyz
= 4((x + y + z)2 − 3(xy + yz + zx)) + 3xyz = 4 + 3xyz
Suy ra P = \(\left( {4 + 3xyz} \right)\frac{{xy + yz + zx}}{{xyz}}\)\( = \frac{{20}}{{xyz}} + 15\) \( = \frac{{20}}{{{x^3} - 4{x^2} + 5x}} + 15\)
Xét hàm f(x) = x3 − 4x2 + 5x trên \(\left[ {\frac{2}{3};2} \right]\) ta có
f '(x) = 3x2 - 8x + 5, f '(x) = 0 ⇔ x = 1, x = \(\frac{5}{3}\)
và f(1) = f(2) = 2, \(f\left( {\frac{2}{3}} \right) = \frac{{50}}{{27}}\); \(f\left( {\frac{5}{3}} \right) = \frac{{50}}{{27}}\)
Suy ra 0 < f(x) ≤ 2 với mọi x ∈ \(\left[ {\frac{2}{3};2} \right]\).
Do đó P ≥ 25
Dấu “=” xảy ra khi x = 2, y = z = 1 hoặc các hoán vị.
Vậy giá trị nhỏ nhất của P là 25, đạt được khi x = 2, y = z = 1 hoặc các hoán vị.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho x + y = 2 và x2 + y2 = 10. Tính giá trị của biểu thức x3 + y3.
Câu 2:
Cho x, y, z là ba số dương. Chứng minh \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).
Câu 3:
Tủ sách thư viện trường em có 2 ngăn: ngăn thứ nhất có số sách bằng \(\frac{2}{3}\) số sách ngăn thứ hai. Nếu xếp thêm vào ngăn thứ nhất 80 cuốn và ngăn thứ hai 40 cuốn thì số sách ngăn thứ nhất bằng \(\frac{3}{4}\) số sách ngăn thứ hai. Hỏi ban đầu mỗi ngăn tủ có bao nhiêu cuốn sách?
Câu 4:
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh M, N, P, Q cùng nằm trên một đường tròn.
Câu 5:
Một mảnh vườn hình chữ nhật có nửa chu vi là 94 m, chiều dài hơn chiều rộng 16 m. Tính diện tích của mảnh vườn đó?
Câu 6:
Tìm nghiệm nguyên của phương trình: y2 – 5y + 62 = (y – 2)x2 + (y2 – 6y + 8)x.
Câu 7:
Vẽ hai góc kề bù \(\widehat {xOy},\widehat {yOz}\) biết \(\widehat {xOy} = 80^\circ \). Gọi Om là tia phân giác của góc xOy, On là tia phân giác của góc yOz. Tính góc mOy, nOy và mOn.
về câu hỏi!