Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh M, N, P, Q cùng nằm trên một đường tròn.
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh M, N, P, Q cùng nằm trên một đường tròn.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

MN, NP, PQ, QM lần lượt là đường trung bình tam giác ABC, BCD, ACD, ABD.
Do đó MN // AC; NP // BD; PQ // AC; QM // BD.
Mà AC ⊥ BD nên MN ⊥ NP; PQ ⊥ QM.
Do đó \(\widehat {MNP} + \widehat {PQM} = 90^\circ + 90^\circ = 180^\circ \).
Vậy tứ giác MNPQ nội tiếp (đpcm)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có x + y = 2 \( \Rightarrow \) x2 + 2xy + y2 = 4
\( \Rightarrow \) 2xy = 4 – (x2 + y2) = 4 – 10 = −6
\( \Rightarrow \) xy = −3.
Lại có (x + y)3 = x3 + 3x2y + 3xy2 + y3
\( \Rightarrow \) x3 + y3 = (x + y)3 – 3xy(x + y)
Vậy x3 + y3 = 23 −3. (−3).2 = 8 + 18 = 26.
Lời giải
Áp dụng bất đẳng thức Cô si cho ba số dương, ta có:
\(x + y + z \ge 3\sqrt[3]{{xyz}}\); \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge 3\sqrt[3]{{\frac{1}{{xyz}}}}\)
Từ đó \(\left( {x + y + z} \right)\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right) \ge 3.\sqrt[3]{{xyz}}.3.\sqrt[3]{{\frac{1}{{xyz}}}} = 9\).
Do đó \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).
Vậy \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.