Câu hỏi:
13/07/2024 197Cho các số thực x, y thỏa mãn đẳng thức:
\(\left( {x + \sqrt {2006 + {x^2}} } \right)\left( {y + \sqrt {2006 + {y^2}} } \right) = 2006.\) Chứng minh x + y = 0.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Từ giả thiết ta có:
\(\left( {x - \sqrt {2006 + {x^2}} } \right)\left( {x + \sqrt {2006 + {x^2}} } \right)\left( {y + \sqrt {2006 + {y^2}} } \right) = \left( {x - \sqrt {2006 + {x^2}} } \right)\)\( \Leftrightarrow \left( {{x^2} - \left( {2006 + {x^2}} \right)} \right)\left( {y + \sqrt {2006 + {y^2}} } \right) = \left( {x - \sqrt {2006 + {x^2}} } \right)\)\( \Leftrightarrow - \left( {y + \sqrt {2006 + {y^2}} } \right) = \left( {x - \sqrt {2006 + {x^2}} } \right)\) (1)
Tương tự ta có: \( - \left( {x + \sqrt {2006 + {x^2}} } \right) = \left( {y - \sqrt {2006 + {y^2}} } \right)\) (2)
Cộng vế với vế của (1) và (2) ta được và rút gọn ta được:
− x – y = x + y \( \Leftrightarrow \) x + y = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho x + y = 2 và x2 + y2 = 10. Tính giá trị của biểu thức x3 + y3.
Câu 2:
Cho x, y, z là ba số dương. Chứng minh \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \ge \frac{9}{{x + y + z}}\).
Câu 3:
Tủ sách thư viện trường em có 2 ngăn: ngăn thứ nhất có số sách bằng \(\frac{2}{3}\) số sách ngăn thứ hai. Nếu xếp thêm vào ngăn thứ nhất 80 cuốn và ngăn thứ hai 40 cuốn thì số sách ngăn thứ nhất bằng \(\frac{3}{4}\) số sách ngăn thứ hai. Hỏi ban đầu mỗi ngăn tủ có bao nhiêu cuốn sách?
Câu 4:
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh M, N, P, Q cùng nằm trên một đường tròn.
Câu 5:
Một mảnh vườn hình chữ nhật có nửa chu vi là 94 m, chiều dài hơn chiều rộng 16 m. Tính diện tích của mảnh vườn đó?
Câu 6:
Tìm nghiệm nguyên của phương trình: y2 – 5y + 62 = (y – 2)x2 + (y2 – 6y + 8)x.
Câu 7:
Vẽ hai góc kề bù \(\widehat {xOy},\widehat {yOz}\) biết \(\widehat {xOy} = 80^\circ \). Gọi Om là tia phân giác của góc xOy, On là tia phân giác của góc yOz. Tính góc mOy, nOy và mOn.
về câu hỏi!