Câu hỏi:
13/07/2024 163Trong các tam giác vuông có độ dài các cạnh là số nguyên mà giá trị diện tích và chu vi bằng nhau, độ dài đường cao ứng với cạnh huyền đạt giá trị lớn nhất có thể là?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi độ dài hai cạnh góc vuông là a và b (a,b ∈ ℕ*, đvđd)
\( \Rightarrow \) Độ dài cạnh huyền là \[\sqrt {{a^2} + {b^2}} \].
Gọi đường cao là h.
Khi đó:
Chu vi của tam giác là: \(a + b + \sqrt {{a^2} + {b^2}} \)
Diện tích của tam giác là: \(\frac{1}{2}.\sqrt {{a^2} + {b^2}} .h\)
Theo bài ra ta có:
\(a + b + \sqrt {{a^2} + {b^2}} = \frac{1}{2}\sqrt {{a^2} + {b^2}} .h\)
\( \Rightarrow h = \frac{{2a + 2b + 2\sqrt {{a^2} + {b^2}} }}{{\sqrt {{a^2} + {b^2}} }} = 2 + 2\frac{{a + b}}{{\sqrt {{a^2} + {b^2}} }}\)
Theo bđt bunhiacopxki, ta có:
(1.a + 1.b)2 ≤ (12 + 12)(a2 + b2)
\( \Leftrightarrow a + b \le \sqrt {2\left( {{a^2} + {b^2}} \right)} \)
\( \Rightarrow h \le 2 + 2.\frac{{\sqrt {2\left( {{a^2} + {b^2}} \right)} }}{{\sqrt {{a^2} + {b^2}} }} = 2 + 2\sqrt 2 \).
Vậy \({h_{\max }} = 2 + 2\sqrt 2 \) (đvđd).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hình chữ nhật có chu vi 40 m, chiều dài hơn chiều rộng 4 m. Tính diện tích của hình chữ nhật đó.
Câu 2:
So sánh M và N biết: \(M = \frac{{{{100}^{100}} + 1}}{{{{100}^{99}} + 1}}\) và \(N = \frac{{{{100}^{101}} + 1}}{{{{100}^{100}} + 1}}\).
Câu 3:
Tổng của hai số là 10,47. Nếu số hạng thứ nhất gấp 5 lần, số hạng thứ hai gấp lên 3 lần thì tổng hai số là 44,59. Tìm hai số đó?
Câu 6:
M có phải là số chính phương không nếu:
M = 1 + 3 + 5 + … + (2n – 1) Với n ∈ ℕ; n ≠ 0.
Câu 7:
Tìm x, biết:
a) 2(x – 5) – 3(x + 7) = 14;
b) 7(5 – x) – 2(x – 10) = 15.
về câu hỏi!