Câu hỏi:

16/06/2023 205 Lưu

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn. Kẻ đường kính CD. Tia phân giác của \(\widehat {BOD}\) cắt AB tại E.

a) Chứng minh rằng ED là tiếp tuyến của đường tròn (O).

b) Chứng minh AC + DE ≥ 2R.

c) Tính số đo \(\widehat {AOE}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC  (ảnh 1)

a) Xét ∆OBE và ∆ODE có:

OE là cạnh chung

\(\widehat {BOE} = \widehat {DOE}\) (gt)

OB = OD = R

Do đó ∆OBE = ∆ODE (c.g.c)

Suy ra \(\widehat {OBE} = \widehat {ODE} = 90^\circ \)

Do đó ED là tiếp tuyến của đường tròn (O).

b) Theo tính chất của hai tiếp tuyến cắt hau, ta có:

AC = AB; BE = DE

Nên: AC + DE = AB + BE = AE        (1)

Từ câu a) ta có CD\( \bot \)DE, mà CD\( \bot \)AC (gt) nên ED // AC.

Vì CD là khoảng cách giữa hai đường thẳng song song AC và DE

nên AE ≥ CD = 2R          (2)

Từ (1) và (2) suy ra: AC + DE ≥ 2R.

c) Theo tính chất của hai tiếp tuyến cắt nhau, ta có:

OA là tia phân giác của \(\widehat {BOC}\), OE là tia phân giác của \(\widehat {BOD}\).

\(\widehat {BOC}\)\(\widehat {BOD}\) kề bù nên \(\widehat {AOE} = 90^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nửa chu vi hình chữ nhật là: 40 : 2 = 20 (m)

Chiều dài của hình chữ nhật là:

(20 + 4) : 2 = 12 (m)

Chiều rộng của hình chữ nhật là:

20 – 12 = 8 (m)

Vậy diện tích của hình chữ nhật là:

12.8 = 96 (m2)

Đáp số: 96 m2.

Lời giải

\(M = \frac{{{{100}^{100}} + 1}}{{{{100}^{99}} + 1}}\)\( = \frac{{{{100}^{100}} + 100 - 99}}{{{{100}^{99}} + 1}}\)

\( = \frac{{100({{100}^{99}} + 1) - 99}}{{{{100}^{99}} + 1}} = 100 - \frac{{99}}{{{{100}^{99}} + 1}}\).

 \(N = \frac{{{{100}^{101}} + 1}}{{{{100}^{100}} + 1}}\)\( = \frac{{{{100}^{101}} + 100 - 99}}{{{{100}^{100}} + 1}}\)

\( = \frac{{100({{100}^{100}} + 1) - 99}}{{{{100}^{100}} + 1}} = 100 - \frac{{99}}{{{{100}^{100}} + 1}}\)

Ta có: \(\frac{{99}}{{{{100}^{99}} + 1}} > \frac{{99}}{{{{100}^{100}} + 1}}\).

Do đó M < N.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP