Câu hỏi:
16/06/2023 241
Tìm tất cả các giá trị thực của tham số m để điểm M( 2m3; m) tạo với hai điểm cực đại, cực tiểu của đồ thị hàm số y = 2x3 – 3(2m + 1)x2 + 6m(m + 1)x + 1 (C) một tam giác có diện tích nhỏ nhất.
Tìm tất cả các giá trị thực của tham số m để điểm M( 2m3; m) tạo với hai điểm cực đại, cực tiểu của đồ thị hàm số y = 2x3 – 3(2m + 1)x2 + 6m(m + 1)x + 1 (C) một tam giác có diện tích nhỏ nhất.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Ta có: y’ = 6x2 – 6(2m + 1)x + 6m(m + 1)
y’ = 0 \( \Leftrightarrow \)6x2 – 6(2m + 1)x + 6m(m + 1) = 0
\( \Leftrightarrow \)x2 – (2m + 1)x + m(m + 1) = 0
∆ = 4m2 + 4m + 1 – 4(m2 + m) = 1
Suy ra y’ = 0 có hai nghiệm: \[\left[ \begin{array}{l}{x_1} = \frac{{2m + 1 + 1}}{2} = m + 1\\{x_2} = \frac{{2m + 1 - 1}}{2} = m\end{array} \right.\].
Do đó hàm số luôn có cực đại và cực tiểu với mọi m.
+) Tọa độ các điểm cực đại và cực tiểu của đồ thị là: A(m; 2m3 + 3m2 + 1);
B(m + 1; 2m3 + 3m2).
Suy ra \(AB = \sqrt {{{(m - m - 1)}^2} + {{\left( {2{m^3} + 3{m^2} + 1 - 2{m^3} - 3{m^2}} \right)}^2}} = \sqrt 2 \).
Và phương trình đường thẳng AB là:
x + y – 2m3 – 3m2 – m – 1 = 0.
Do đó ∆MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất.
\({d_{(M;AB)}} = \frac{{\left| {2{m^3} + m - 2{m^3} - 3{m^2} - m - 1} \right|}}{{\sqrt 2 }} = \frac{{3{m^2} + 1}}{{\sqrt 2 }} \ge \frac{1}{{\sqrt 2 }}\).
Suy ra \(\min {d_{(M;AB)}} = \frac{1}{{\sqrt 2 }}\).
Dấu “=” xảy ra khi m = 0.
Vậy với m = 0 thì thỏa mãn yêu cầu bài toán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nửa chu vi hình chữ nhật là: 40 : 2 = 20 (m)
Chiều dài của hình chữ nhật là:
(20 + 4) : 2 = 12 (m)
Chiều rộng của hình chữ nhật là:
20 – 12 = 8 (m)
Vậy diện tích của hình chữ nhật là:
12.8 = 96 (m2)
Đáp số: 96 m2.
Lời giải
• \(M = \frac{{{{100}^{100}} + 1}}{{{{100}^{99}} + 1}}\)\( = \frac{{{{100}^{100}} + 100 - 99}}{{{{100}^{99}} + 1}}\)
\( = \frac{{100({{100}^{99}} + 1) - 99}}{{{{100}^{99}} + 1}} = 100 - \frac{{99}}{{{{100}^{99}} + 1}}\).
• \(N = \frac{{{{100}^{101}} + 1}}{{{{100}^{100}} + 1}}\)\( = \frac{{{{100}^{101}} + 100 - 99}}{{{{100}^{100}} + 1}}\)
\( = \frac{{100({{100}^{100}} + 1) - 99}}{{{{100}^{100}} + 1}} = 100 - \frac{{99}}{{{{100}^{100}} + 1}}\)
Ta có: \(\frac{{99}}{{{{100}^{99}} + 1}} > \frac{{99}}{{{{100}^{100}} + 1}}\).
Do đó M < N.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.