Câu hỏi:

13/07/2024 1,326 Lưu

Cho đường tròn (O; R), đường kính AB. Vẽ dây cung BC = R. Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn (O) tại D. Chứng minh DC là tiếp tuyến của đường tròn (O).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R), đường kính AB. Vẽ dây cung BC = R. Đường thẳng qua O vuông góc với AC cắt tiếp tuyến tại A của đường tròn (O) tại D. Chứng minh DC là tiếp tuyến của đường tròn (O). (ảnh 1)

Gọi H = OD ∩ AC

Ta có: OD AC tại H 

H là trung điểm của AC

OD là trung trực của AC

DA = DC (tính chất đường trung trực).

Xét ΔOAD và ΔOCD có:

OA = OC (= R)

OD chung

DA = DC

Þ ΔOAD = ΔOCD (c.c.c)

OAD^=OCD^

Mà OAD^=90°

OCD^=90°

Þ OC CD

Vậy CD là tiếp tuyến của đường tròn (O) tại C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Áp dụng công thức ta có: i=Ζ1Ζ2

Vậy tỉ số truyền ở đây là: i=Ζ1Ζ2=8020=4.

Vậy chi tiết đĩa líp quay nhanh hơn đĩa xích 4 lần.

Lời giải

Chọn hệ trục tọa độ Oxy như hình vẽ.

Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, (ảnh 2)

Phương trình Parabol (P) có dạng y = ax2 + bx + c

(P) đi qua điểm A(0; 0), B(162; 0) và M(10; 43) nên ta có:

c=0                                     1622.a+162b+c=0102.a+10b+c=43   c=0              a=431520b=3483760   

(P):y=431520x2+3483760x

Do đó chiều cao của cổng là:

h=Δ4a=b24ac4a185,6   (m)

Vậy độ cao của cổng Arch (tính từ mặt đất đến điểm cao nhất của cổng) khoảng 185,6 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP