Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, E lần lượt là trung điểm của AB, AC, BC. Chứng minh rằng tứ giác ANEB là hình thang vuông.
Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, E lần lượt là trung điểm của AB, AC, BC. Chứng minh rằng tứ giác ANEB là hình thang vuông.
Quảng cáo
Trả lời:

Xét ΔABC vuông tại A có AE là đường trung tuyến ứng với cạnh huyền BC
Suy ra
Vì EA = EC nên E nằm trên đường trung trực của AC.
Vì N là trung điểm của AC nên N nằm trên đường trung trực của AC.
Suy ra EN là đường trung trực của đoạn thẳng AC nên EN ⊥ AC.
Ta có: BA ⊥ AC và EN ⊥ AC nên BA // EN.
Tứ giác ANEB có BA // EN nên ANEB là hình thang
Lại có nên hình thang ANEB là hình thang vuông
Vậy ANEB là hình thang vuông.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng công thức ta có:
Vậy tỉ số truyền ở đây là: .
Vậy chi tiết đĩa líp quay nhanh hơn đĩa xích 4 lần.
Lời giải

Trong (ABCD) gọi AD Ç BC = {E}
Ta có:
• E Î AD Ì (ADN) Þ E Î (ADN)
• E Î BC Ì (SBC) Þ E Î (SBC)
Do đó E Î (ADN) Ç (SBC)
Þ (ADN) Ç (SBC) = EN
Gọi SC Ç EN = {P}
Ta có: P Î SC
P Î EN Ì (ADN)
Þ P = SC Ç (ADN)
Vậy điểm P cần tìm là giao điểm của SC và ENLời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
