Câu hỏi:
11/07/2024 410
Cho tam giác ABC (AB = AC), trung tuyến BD. Lấy điểm E sao cho C là trung điểm AE. Chứng minh rằng BE = 2BD.
Cho tam giác ABC (AB = AC), trung tuyến BD. Lấy điểm E sao cho C là trung điểm AE. Chứng minh rằng BE = 2BD.
Quảng cáo
Trả lời:

Gọi I, M lần lượt là trung điểm của AB, BC.
Xét ∆ABM và ∆ACM, có:
AM là cạnh chung;
AB = AC (giả thiết);
BM = CM (M là trung điểm BC).
Do đó ∆ABM = ∆ACM (c.c.c).
Ta có D, I lần lượt là trung điểm của AC, AB.
Suy ra AC = 2CD và AB = 2BI.
Mà AB = AC (giả thiết).
Do đó 2CD = 2BI hay CD = BI.
Xét ∆BCI và ∆CBD, có:
BC là cạnh chung;
(∆ABM = ∆ACM);
BI = CD (chứng minh trên).
Do đó ∆BCI = ∆CBD (c.g.c).
Suy ra CI = BD (cặp cạnh tương ứng).
Tam giác ABE có C, I lần lượt là trung điểm của AE, AB.
Suy ra CI là đường trung bình của tam giác ABE.
Do đó CI // BE và 2CI = BE.
Mà CI = BD.
Vậy BE = 2BD.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Giả sử ta cần vẽ hình chiếu của một điểm A trên cạnh BC, ta kẻ một đường thẳng đi qua điểm A và vuông góc với BC, đường thẳng này cắt BC tại H.
Vậy H là hình chiếu của một điểm A trên cạnh BC.
Lời giải
Dùng biểu đồ Ven, ta có:

Ta thấy A ⊂ B ⇒ C \ B ⊂ C \ A.
Suy ra phương án B sai.
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.