Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng M, N, P, Q cùng nằm trên một đường tròn.
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng M, N, P, Q cùng nằm trên một đường tròn.
Quảng cáo
Trả lời:


Ta có MN, NP, PQ, QM lần lượt là đường trung bình của các tam giác ABC, BCD, ACD, ABD.
Suy ra MN // AC; NP // BD; PQ // AC; QM // BD.
Mà AC ⊥ BD (giả thiết).
Do đó MN ⊥ NP và PQ ⊥ QM.
Vì vậy .
Suy ra tứ giác MNPQ nội tiếp đường tròn đường kính MP.
Vậy M, N, P, Q cùng nằm trên một đường tròn.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Giả sử ta cần vẽ hình chiếu của một điểm A trên cạnh BC, ta kẻ một đường thẳng đi qua điểm A và vuông góc với BC, đường thẳng này cắt BC tại H.
Vậy H là hình chiếu của một điểm A trên cạnh BC.
Câu 2
Lời giải
Dùng biểu đồ Ven, ta có:

Ta thấy A ⊂ B ⇒ C \ B ⊂ C \ A.
Suy ra phương án B sai.
Vậy ta chọn phương án B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.