Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
b) Ta có AM ⊥ SC (do AM ⊥ (SBC)) và AN ⊥ SC (do AN ⊥ (SDC)).
Vì vậy SC ⊥ (AMN).
Suy ra SC ⊥ MN (1)
Tam giác SAB vuông tại A có AM là đường cao: SA2 = SM.SB (*)
Tam giác SAD vuông tại A có AN là đường cao: SA2 = SN.SD (**)
Từ (*), (**), suy ra SM.SB = SN.SD.
Do đó .
Áp dụng định lí Thales đảo, ta được MN // BD.
Ta có BD ⊥ SA (SA ⊥ (ABCD)) và BD ⊥ AC (do ABCD là hình vuông).
Suy ra BD ⊥ (SAC).
Mà MN // BD (chứng minh trên).
Vậy MN ⊥ (SAC).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Có bao nhiêu giá trị nguyên của m để hàm số y = mx4 + (m2 – 4)x2 + 2 có đúng một điểm cực đại và không có điểm cực tiểu?
Câu 4:
Cho đường tròn tâm O, dây cung AB không đi qua tâm O. Vẽ dây AC vuông góc với AB tại A. Chứng minh rằng:
a) Ba điểm B, O, C thẳng hàng.
Câu 5:
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo. Gọi M, N theo thứ tự là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. Gọi F là giao điểm của CN và AB.
a) Chứng minh tứ giác AMCN là hình bình hành.
Câu 6:
Xe thứ nhất chở được 9 tấn xi-măng, xe thứ hai chở ít hơn xe thứ nhất 700 kg xi-măng. Hỏi cả hai xe chở được bao nhiêu tạ xi-măng?
Câu 7:
c) Gọi H là giao điểm của AB và OM. Chứng minh AB là phân giác của .
về câu hỏi!