Câu hỏi:
30/06/2023 857Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB < AC), đường kính AD. Đường cao BE, CP, AQ cắt nhau tại H.
a) Chứng minh rằng tứ giác APHE nội tiếp.
b) So sánh \(\widehat {BAH}\) và \(\widehat {OAC}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a)
Xét tam giác ABC có:
CP là đường cao nên CP vuông góc với AB hay \(\widehat {CPA} = 90^\circ \)
BE là đường cao nên BE vuông góc với AC hay \(\widehat {BEA} = 90^\circ \)
Xét tứ giác APHE có:
\(\widehat {APH} = \widehat {CPA} = 90^\circ \)
\(\widehat {AEH} = \widehat {BEA} = 90^\circ \)
\( \Rightarrow \widehat {APH} + \widehat {AEH} = 180^\circ \)
Do đó, tứ giác APHE nội tiếp.
b)
Điểm C thuộc đường tròn đường kính AD nên \(\widehat {ACD} = 90^\circ \)
Xét đường tròn tâm O, \(\widehat {ABC} = \widehat {ADC}\) (góc nội tiếp cùng chắn cung nhỏ AC)
Xét tam giác ABQ và tam giác ADC có:
\(\widehat {AQB} = \widehat {ACD} = 90^\circ \)
\(\widehat {ABQ} = \widehat {ABC} = \widehat {ADC}\) (cmt)
Do đó, tam giác ABE và tam giác ADC đồng dạng (g.g)
\( \Rightarrow \widehat {BAH} = \widehat {OAC}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho bảng sau.
1 |
2 |
4 |
7 |
4 |
? |
7 |
10 |
6 |
? |
? |
12 |
7 |
8 |
10 |
? |
Hỏi bảng trên còn thiếu những số nào?
Câu 3:
Xem hình vẽ, cho biết a song song b và c vuông góc với a.
a) Cho đường thẳng d cắt hai đường thẳng a và b tại A và B. Cho biết góc \(\widehat {{A_1}} = 115^\circ \). Tính số đo các góc \(\widehat {{B_2}},\widehat {{B_3}},\widehat {{A_3}}\).
b) Gọi Ax và By lần lượt là tia phân giác của các góc \(\widehat {{A_1}}\) và \(\widehat {{B_3}}\). Chứng minh: Ax song song By.
Câu 4:
Tìm x, biết:
a) (x + 4)(x2 – 4x + 16) – x(x – 5)(x + 5) = 264;
b) (x – 2)3 – (x – 2)(x 2 + 2x + 4) + 6(x – 2)(x + 2) = 60.
Câu 7:
Chia 50 cái kẹo cho 10 em bé, em nào cũng được chia kẹo. Chứng minh rằng dù cách chia thế nào cũng tồn tại 2 em bé có số kẹo như nhau.
về câu hỏi!