Câu hỏi:
30/06/2023 320Cho \(A = 3 + {3^2} + {3^3} + ... + {3^{2009}}\). Tìm số tự nhiên n, biết rằng 2A + 3 = 3n.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(\begin{array}{l}A = 3 + {3^2} + {3^3} + ... + {3^{2009}}\\ \Rightarrow 3A = {3^2} + {3^3} + ... + {3^{2010}}\\ \Rightarrow 3A - A = {3^{2010}} - 3\\ \Rightarrow 2A = {3^{2010}} - 3\\ \Rightarrow 2A + 3 = {3^{2010}}\\ \Rightarrow n = 2010\end{array}\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho bảng sau.
1 |
2 |
4 |
7 |
4 |
? |
7 |
10 |
6 |
? |
? |
12 |
7 |
8 |
10 |
? |
Hỏi bảng trên còn thiếu những số nào?
Câu 3:
Xem hình vẽ, cho biết a song song b và c vuông góc với a.
a) Cho đường thẳng d cắt hai đường thẳng a và b tại A và B. Cho biết góc \(\widehat {{A_1}} = 115^\circ \). Tính số đo các góc \(\widehat {{B_2}},\widehat {{B_3}},\widehat {{A_3}}\).
b) Gọi Ax và By lần lượt là tia phân giác của các góc \(\widehat {{A_1}}\) và \(\widehat {{B_3}}\). Chứng minh: Ax song song By.
Câu 4:
Tìm x, biết:
a) (x + 4)(x2 – 4x + 16) – x(x – 5)(x + 5) = 264;
b) (x – 2)3 – (x – 2)(x 2 + 2x + 4) + 6(x – 2)(x + 2) = 60.
Câu 7:
Chia 50 cái kẹo cho 10 em bé, em nào cũng được chia kẹo. Chứng minh rằng dù cách chia thế nào cũng tồn tại 2 em bé có số kẹo như nhau.
về câu hỏi!