Câu hỏi:

03/07/2023 202

Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2xy + 3y2 + 5y + 10.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: P = x2 + 2xy + 3y2 + 5y + 10

= (x2 + 2xy + y2) + (2y2 + 5y + 10) 

\[ = {(x + y)^2} + 2{\left( {{y^2} + \frac{5}{2}y + 5} \right)^2} = {(x + y)^2} + 2\left( {{y^2} + \frac{5}{2}y + \frac{{25}}{{16}} + \frac{{55}}{{16}}} \right)\]

\[ = {(x + y)^2} + 2{\left( {y + \frac{5}{4}} \right)^2} + \frac{{55}}{8} \ge \frac{{55}}{8}\]

Dấu "=" xảy ra \[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 0}\\{y + \frac{5}{4} = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \frac{5}{4}}\\{y = \frac{{ - 5}}{4}}\end{array}} \right.\]

Vậy giá trị nhỏ nhất của \[P = \frac{{55}}{8}\] khi \[x = \frac{5}{4};\,\,y = \frac{{ - 5}}{4}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lớp học 100 học sinh được chia làm 3 nhóm:

Không nói được tiếng

Nói được 1 thứ tiếng hoặc Anh hoặc Pháp

Nói được cả 2 thứ tiếng Anh và Pháp

Tổng số học sinh không biết và nói được 1 thứ tiếng là:

100 – 23 = 77 (học sinh)

Số học sinh chỉ nói được tiếng Anh là:

70 – 23 = 47 (học sinh)

Số học sinh nói được tiếng pháp là:

45 – 23 = 22 (học sinh)

Số học sinh nói được tiếng Anh hoặc Pháp là:

47 + 22 = 69 (học sinh)

Ta có số học sinh không biết tiếng và số học sinh chỉ biết 1 thứ tiếng là 77 học sinh. Trong đó 69 học sinh chỉ nói được 1 thứ tiếng.

Số học sinh không biết tiếng Anh hoặc Pháp là:

77 – 69 = 8 (học sinh)

Đáp số: 8 học sinh

Lời giải

Các số có hai chữ số có nghĩa là :

1,3.103; 1,3.10−3

Vậy có 2 số có 2 chữ số có nghĩa.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP