Câu hỏi:

12/07/2024 2,106

Cho a,b,c là các số dương thoả mãn ab + bc + ac = 1. Tìm giá trị nhỏ nhất của biểu thức \[P = \frac{{\sqrt {{a^2} + 1} .\sqrt {{b^2} + 1} }}{{\sqrt {{c^2} + 1} }} + \frac{{\sqrt {{b^2} + 1} .\sqrt {{c^2} + 1} }}{{\sqrt {{a^2} + 1} }} + \frac{{\sqrt {{c^2} + 1} .\sqrt {{a^2} + 1} }}{{\sqrt {{b^2} + 1} }}\].

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với ab + bc + ca = 1 và a, b, c > 0, ta có:

\[\left\{ {\begin{array}{*{20}{c}}{\sqrt {{a^2} + 1} = \sqrt {(a + b)(a + c)} }\\{\sqrt {{b^2} + 1} = \sqrt {(b + c)(b + a)} }\\{\sqrt {{c^2} + 1} = \sqrt {(c + a)(c + b)} }\end{array}} \right.\]

Do đó:

\[\frac{{\sqrt {{a^2} + 1} .\sqrt {{b^2} + 1} }}{{\sqrt {{c^2} + 1} }} = a + b\]

\[\frac{{\sqrt {{b^2} + 1} .\sqrt {{c^2} + 1} }}{{\sqrt {{a^2} + 1} }} = b + c\]

\[\frac{{\sqrt {{c^2} + 1} .\sqrt {{a^2} + 1} }}{{\sqrt {{b^2} + 1} }} = c + a\]

Þ P = 2(a + b + c)

Þ P2 = 4(a + b + c)2 ≥ 4. 3(ab + bc + ca)

Hay P2 ≥ 12

\[ \Leftrightarrow P \ge 2\sqrt 3 \]

Dấu “=” xảy ra khi \[a = b = c = \frac{1}{{\sqrt 3 }}\]

Vậy giá trị nhỏ nhất của \[P = 2\sqrt 3 \] khi \[a = b = c = \frac{1}{{\sqrt 3 }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho các số: 13,1; 13,10; 1,3.103; 1,30.103; 1,3.103; 1,30.103. Có mấy số có hai chữ số có nghĩa.

Xem đáp án » 11/07/2024 14,068

Câu 2:

Trong 100 học sinh lớp 10, có 70 học sinh nói được tiếng Anh, 45 học sinh nói được tiếng Pháp và 23 học sinh nói được cả hai tiếng Anh và Pháp. Hỏi có bao nhiêu học sinh không nói được tiếng Anh và tiếng Pháp?

Xem đáp án » 11/07/2024 13,977

Câu 3:

Khẳng định nào sau đây đúng?

Xem đáp án » 03/07/2023 6,385

Câu 4:

Cho n điểm trên mặt phẳng. Bạn An ký hiệu chúng là A1, A2, ..., An. Bạn Bình ký hiệu chúng là B1, B2, ..., Bn..

Chứng minh rằng: \[\overrightarrow {{A_1}{B_1}} + \overrightarrow {{A_2}{B_2}} + ... + \overrightarrow {{A_n}{B_n}} = \overrightarrow 0 \].

Xem đáp án » 12/07/2024 4,007

Câu 5:

Từ điểm M nằm ngoài đường tròn (O), vẽ cát tuyến MCD không đi qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O) sao cho C nằm giữa M và D. Gọi I là trung điểm của CD. Gọi K là giao điểm của các tiếp tuyến tại C và D của đường tròn (O). Chứng minh: A, B, K thẳng hàng.

Xem đáp án » 11/07/2024 3,827

Câu 6:

Tìm các giá trị thực của tham số m để phương trình (m – 1)x2 – 2mx + m = 0 có một nghiệm lớn hơn 1 và một nghiệm nhỏ hơn 1.

Xem đáp án » 11/07/2024 2,895

Câu 7:

Cho hệ phương trình: \[\left\{ {\begin{array}{*{20}{c}}{3x - y = 2m + 3}\\{x + 2y = 3m + 1}\end{array}} \right.\] với m là tham số. Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn x2 + y2 = 5.

Xem đáp án » 12/07/2024 2,346

Bình luận


Bình luận