Câu hỏi:

12/07/2024 2,993

Cho a,b,c là các số dương thoả mãn ab + bc + ac = 1. Tìm giá trị nhỏ nhất của biểu thức \[P = \frac{{\sqrt {{a^2} + 1} .\sqrt {{b^2} + 1} }}{{\sqrt {{c^2} + 1} }} + \frac{{\sqrt {{b^2} + 1} .\sqrt {{c^2} + 1} }}{{\sqrt {{a^2} + 1} }} + \frac{{\sqrt {{c^2} + 1} .\sqrt {{a^2} + 1} }}{{\sqrt {{b^2} + 1} }}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với ab + bc + ca = 1 và a, b, c > 0, ta có:

\[\left\{ {\begin{array}{*{20}{c}}{\sqrt {{a^2} + 1} = \sqrt {(a + b)(a + c)} }\\{\sqrt {{b^2} + 1} = \sqrt {(b + c)(b + a)} }\\{\sqrt {{c^2} + 1} = \sqrt {(c + a)(c + b)} }\end{array}} \right.\]

Do đó:

\[\frac{{\sqrt {{a^2} + 1} .\sqrt {{b^2} + 1} }}{{\sqrt {{c^2} + 1} }} = a + b\]

\[\frac{{\sqrt {{b^2} + 1} .\sqrt {{c^2} + 1} }}{{\sqrt {{a^2} + 1} }} = b + c\]

\[\frac{{\sqrt {{c^2} + 1} .\sqrt {{a^2} + 1} }}{{\sqrt {{b^2} + 1} }} = c + a\]

Þ P = 2(a + b + c)

Þ P2 = 4(a + b + c)2 ≥ 4. 3(ab + bc + ca)

Hay P2 ≥ 12

\[ \Leftrightarrow P \ge 2\sqrt 3 \]

Dấu “=” xảy ra khi \[a = b = c = \frac{1}{{\sqrt 3 }}\]

Vậy giá trị nhỏ nhất của \[P = 2\sqrt 3 \] khi \[a = b = c = \frac{1}{{\sqrt 3 }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lớp học 100 học sinh được chia làm 3 nhóm:

Không nói được tiếng

Nói được 1 thứ tiếng hoặc Anh hoặc Pháp

Nói được cả 2 thứ tiếng Anh và Pháp

Tổng số học sinh không biết và nói được 1 thứ tiếng là:

100 – 23 = 77 (học sinh)

Số học sinh chỉ nói được tiếng Anh là:

70 – 23 = 47 (học sinh)

Số học sinh nói được tiếng pháp là:

45 – 23 = 22 (học sinh)

Số học sinh nói được tiếng Anh hoặc Pháp là:

47 + 22 = 69 (học sinh)

Ta có số học sinh không biết tiếng và số học sinh chỉ biết 1 thứ tiếng là 77 học sinh. Trong đó 69 học sinh chỉ nói được 1 thứ tiếng.

Số học sinh không biết tiếng Anh hoặc Pháp là:

77 – 69 = 8 (học sinh)

Đáp số: 8 học sinh

Lời giải

Các số có hai chữ số có nghĩa là :

1,3.103; 1,3.10−3

Vậy có 2 số có 2 chữ số có nghĩa.

Câu 3

Khẳng định nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay