Câu hỏi:

04/07/2023 480

Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E, vẽ HF vuông góc với AC tại F.

Chứng minh rằng: , AH² = AE.AB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A có đường cao AH. Vẽ HE vuông góc với AB tại E (ảnh 1)

Xét ∆AEH và ∆AHB có:

\(\widehat {AEH} = \widehat {AHB} = 90^\circ \)

\(\widehat {BAH}\) chung

Do đó  (g.g)

Suy ra \(\frac{{AE}}{{AH}} = \frac{{AH}}{{AB}} \Leftrightarrow A{H^2} = AE.AB\) (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn 5 học sinh tùy ý trong 11 học sinh có số cách là: \(C_{11}^5\)

\( \Rightarrow n\left( \Omega \right) = 462\)

Gọi A là biến cố chọn ra 5 học sinh trong đó có cả nam và nữ.

Khi đó \(\overline A \) là biến cố chọn ra 5 học sinh trong đó tất cả là nữ hoặc tất cả là nam.

Suy ra n(\(\overline A \)) = \(C_6^5 + C_5^5 = 6 + 1 = 7\) (Cách)

\( \Rightarrow n(A) = n\left( \Omega \right) - n\left( {\overline A } \right) = 462 - 7 = 455\) (cách)

Vậy có 455 cách chọn ra 5 học sinh trong đó có cả nữ và nam.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP