Câu hỏi:
04/07/2023 1,186Cho ∆ABC có 3 góc nhọn, AH là đường cao. Vẽ HE vuông góc với AB tại E, HF vuông góc AC tại F .
a) Chứng minh: AE.AB = AF.AC.
b) Cho BH = 3cm, AH = 4cm. Tính AE, BE.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét ΔAHB vuông tại H, HE là đường cao nên ta có AH² = AE.AB
Xét ΔAHC vuông tại H, HF là đường cao nên ta có AH² = AF.AC
⇒ AE.AB = AF.AC
b) Xét ΔAHB vuông tại H. Áp dụng định lý Py-ta-go:
AB² = AH² + BH² = 16 + 9 = 25
⇒ AB = 5 (cm)
Có AH² = AE.AB ⇒ AE = 3,2 (cm)
Có BE = AB – AE = 5 – 3,2 = 1,8 (cm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây là sai?
A. Đường thẳng IO song song với mặt phẳng (SAD);
B. Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác;
C. Đường thẳng IO song song với mặt phẳng (SAB);
D. Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO.
Câu 3:
Cho tam giác ABC có AB = 2; AC = 3; \(\widehat A = 60^\circ \). Tính độ dài cạnh BC.
Câu 4:
Chứng minh rằng n4 + 2n3 – n2 – 2n chia hết cho 24 với mọi số nguyên n.
Câu 5:
Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{6xy}} = \frac{1}{6}\).
Câu 6:
Cho hình chóp S ABCD có đáy ABCD là hình bình hành với O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm SA và SD. Chứng minh ba đường thẳng SO, BN, CM đồng quy.
Câu 7:
về câu hỏi!