Câu hỏi:

04/07/2023 1,934

Cho ∆ABC có 3 góc nhọn, AH là đường cao. Vẽ HE vuông góc với AB tại E, HF vuông góc AC tại F .

a) Chứng minh: AE.AB = AF.AC.

b) Cho BH = 3cm, AH = 4cm. Tính AE, BE.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ∆ABC có 3 góc nhọn, AH là đường cao. Vẽ HE vuông góc với AB tại E (ảnh 1)

a)  Xét ΔAHB vuông tại H, HE là đường cao nên ta có AH² = AE.AB

Xét ΔAHC vuông tại H, HF là đường cao nên ta có AH² = AF.AC

AE.AB = AF.AC

b) Xét ΔAHB vuông tại H. Áp dụng định lý Py-ta-go:

AB² = AH² + BH² = 16 + 9 = 25

AB = 5 (cm)

Có AH² = AE.AB AE = 3,2 (cm)

Có BE = AB – AE = 5 – 3,2 = 1,8 (cm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn 5 học sinh tùy ý trong 11 học sinh có số cách là: \(C_{11}^5\)

\( \Rightarrow n\left( \Omega \right) = 462\)

Gọi A là biến cố chọn ra 5 học sinh trong đó có cả nam và nữ.

Khi đó \(\overline A \) là biến cố chọn ra 5 học sinh trong đó tất cả là nữ hoặc tất cả là nam.

Suy ra n(\(\overline A \)) = \(C_6^5 + C_5^5 = 6 + 1 = 7\) (Cách)

\( \Rightarrow n(A) = n\left( \Omega \right) - n\left( {\overline A } \right) = 462 - 7 = 455\) (cách)

Vậy có 455 cách chọn ra 5 học sinh trong đó có cả nữ và nam.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP