Câu hỏi:

04/07/2023 433

Cho đường tròn (O; R) và điểm A sao cho OA = 2R. Vẽ tiếp tuyến AB; AC với (O) (B, C là tiếp điểm).

a) Chứng minh tam giác ABC đều.

b) Đường vuông góc với OB tại O cắt AC tại D. Đường vuông góc với OC tại O cắt AB tại E. Chứng minh tứ giác ADOE là hình thoi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R) và điểm A sao cho OA = 2R. Vẽ tiếp tuyến AB; AC với (ảnh 1)

a) Ta có ∆AOC vuông tại C

\(\sin \widehat {CAO} = \frac{{OC}}{{OA}} = \frac{R}{{2R}} = \frac{1}{2} \Rightarrow \widehat {CAO} = 30^\circ \)

Mà A là giao điểm của 2 tiếp tuyến của (O).

\( \Rightarrow \widehat {BAC} = 2.\widehat {OAC} = 2.30^\circ = 60^\circ \)            (1)

Và BA = AC         (2)

Từ (1) và (2) nên ta có: ∆ABC đều.

b) Ta có: ODOB; ABOB

Suy ra OD // AB hay OD // AE           (3)

Chứng minh tương tự: OE / /AD         (4)

Từ (3), (4) suy ra ADOE là hình bình hành.

Ta có ∆AOC vuông tại C nên \(\widehat {OAB} + \widehat {AOB} = 90^\circ \)

\( \Rightarrow \widehat {AOB} = 90^\circ - \widehat {OAB} = 90^\circ - 30^\circ = 60^\circ \)

Ta lại có \(\widehat {DOB} = 90^\circ \Rightarrow \widehat {DOA} + \widehat {AOB} = 90^\circ \)

\( \Leftrightarrow \widehat {DOA} + 60^\circ = 90^\circ \Leftrightarrow \widehat {DOA} = 30^\circ \)

\( \Rightarrow \widehat {OAD} = \widehat {DOA} = 30^\circ \)

∆DOA cân tại D

AD = DO.

Mà ADOE là hình bình hành nên ADOE là hình thoi.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?

Xem đáp án » 04/07/2023 15,633

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây là sai?

A. Đường thẳng IO song song với mặt phẳng (SAD);

B. Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác;

C. Đường thẳng IO song song với mặt phẳng (SAB);

D. Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO.

Xem đáp án » 04/07/2023 8,824

Câu 3:

Cho tam giác ABC có AB = 2; AC = 3; \(\widehat A = 60^\circ \). Tính độ dài cạnh BC.

Xem đáp án » 04/07/2023 5,921

Câu 4:

Chứng minh rằng n4 + 2n3 – n2 – 2n chia hết cho 24 với mọi số nguyên n.

Xem đáp án » 04/07/2023 5,004

Câu 5:

Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{6xy}} = \frac{1}{6}\).

Xem đáp án » 04/07/2023 4,075

Câu 6:

Cho hình bình hành ABCD, có AC là đường chéo lớn. Kẻ CE vuông góc với AB tại E, BI vuông góc với AC tại I.

Chứng minh rằng:

Cho hình bình hành ABCD, có AC là đường chéo lớn. Kẻ CE vuông góc với AB  (ảnh 1)

Xem đáp án » 04/07/2023 2,764

Câu 7:

Một người nông dân mua một con bò giá 10 triệu, rồi bán đi với giá 15 triệu, sau đó mua lại giá 20 triệu rồi lại bán đi với giá 17 triệu. Người bán bò lãi bao nhiêu tiền?

Xem đáp án » 04/07/2023 2,591
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua