Câu hỏi:
04/07/2023 119Tìm số \(\overline {ab} \) biết \(\overline {ab} \) + a + b = 95.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: \(\overline {ab} \) + a + b = 95
⇔ a ´ 10 + b + a + b = 95
⇔ 11a + 2b = 95
⇔ aa + 2b = 95
Vì 95 là số lẻ , 2b là số chẵn nên aa là số lẻ.
Khi đó ta có: aa = {11; 33; 55; 77}
Để b là số có 1 chữ số thì 2b cao nhất là: 9 ´ 2 = 18
Ta có:
2b = 95 – 11 = 84 (loại)
2b = 95 – 33 = 62 (loại)
2b = 95 – 55 = 40 (loại)
2b = 95 – 77 = 18 (thỏa mãn)
Vậy số cần tìm là 79.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây là sai?
A. Đường thẳng IO song song với mặt phẳng (SAD);
B. Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác;
C. Đường thẳng IO song song với mặt phẳng (SAB);
D. Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO.
Câu 3:
Cho tam giác ABC có AB = 2; AC = 3; \(\widehat A = 60^\circ \). Tính độ dài cạnh BC.
Câu 4:
Chứng minh rằng n4 + 2n3 – n2 – 2n chia hết cho 24 với mọi số nguyên n.
Câu 5:
Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{6xy}} = \frac{1}{6}\).
Câu 6:
Cho hình chóp S ABCD có đáy ABCD là hình bình hành với O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm SA và SD. Chứng minh ba đường thẳng SO, BN, CM đồng quy.
Câu 7:
về câu hỏi!