Câu hỏi:
04/07/2023 372
Cho tam giác ABC. Tập hợp các điểm M sao cho
\(\left( {\overrightarrow {MB} + \overrightarrow {MC} } \right)\left( {\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right) = 0\) là một đường tròn.
Cho tam giác ABC. Tập hợp các điểm M sao cho
\(\left( {\overrightarrow {MB} + \overrightarrow {MC} } \right)\left( {\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right) = 0\) là một đường tròn.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Gọi I, J lần lượt là trung điểm của BC, AC.
K là trọng tâm của tam giác JBC ta có:
\(\left( {\overrightarrow {MB} + \overrightarrow {MC} } \right)\left( {\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} } \right) = 0\)
\( \Leftrightarrow 2\overrightarrow {MI} \left[ {\left( {\overrightarrow {MA} + \overrightarrow {MC} } \right) + 2\overrightarrow {MB} + 2\overrightarrow {MC} } \right] = 0\)
\( \Leftrightarrow 2\overrightarrow {MI} \left( {2\overrightarrow {MJ} + 2\overrightarrow {MB} + 2\overrightarrow {MC} } \right) = 0\)
\( \Leftrightarrow 4\overrightarrow {MI} \left( {\overrightarrow {MJ} + \overrightarrow {MB} + \overrightarrow {MC} } \right) = 0\)
\( \Leftrightarrow 4\overrightarrow {MI} .3\overrightarrow {MK} = 0\)
\( \Leftrightarrow \overrightarrow {MI} .\overrightarrow {MK} = 0\)
⇒ MI⊥MK \( \Rightarrow \widehat {IMK} = 90^\circ \)
Do đó điểm M luôn nhìn đoạn IK một góc 90° hay tập hợp điểm M cần tìm là đường tròn đường kính IK.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn 5 học sinh tùy ý trong 11 học sinh có số cách là: \(C_{11}^5\)
\( \Rightarrow n\left( \Omega \right) = 462\)
Gọi A là biến cố chọn ra 5 học sinh trong đó có cả nam và nữ.
Khi đó \(\overline A \) là biến cố chọn ra 5 học sinh trong đó tất cả là nữ hoặc tất cả là nam.
Suy ra n(\(\overline A \)) = \(C_6^5 + C_5^5 = 6 + 1 = 7\) (Cách)
\( \Rightarrow n(A) = n\left( \Omega \right) - n\left( {\overline A } \right) = 462 - 7 = 455\) (cách)
Vậy có 455 cách chọn ra 5 học sinh trong đó có cả nữ và nam.
Lời giải
Đáp án đúng là: B

Ta có: IO//SA ⇒ IO//(SAD) và IO//(SAB) nên đáp án A và đáp án C đúng.
Ta có (SAC) ∩ (IBD) = IO nên đáp án D đúng.
Câu B ta có thiết diện là ∆IBD nên B sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.