Câu hỏi:
04/07/2023 402Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I. Tứ giác AKCM là hình gì?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Xét tứ giác AKCM có:
AC∩MK = {I}
Mà I là chung điểm của hai đoạn AC và MK (gt)
⇒ Tứ giác AKCM là hình bình hành (1)
Vì ∆ABC cân tại A
⇒ AM vừa là đường trung tuyến và cũng là đường cao của ∆ABC.
\[ \Rightarrow \widehat {AMC} = 90^\circ \] (2)
Từ (1) và (2) suy ra tứ giác AKCM là hình chữ nhật.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây là sai?
A. Đường thẳng IO song song với mặt phẳng (SAD);
B. Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác;
C. Đường thẳng IO song song với mặt phẳng (SAB);
D. Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO.
Câu 3:
Cho tam giác ABC có AB = 2; AC = 3; \(\widehat A = 60^\circ \). Tính độ dài cạnh BC.
Câu 4:
Chứng minh rằng n4 + 2n3 – n2 – 2n chia hết cho 24 với mọi số nguyên n.
Câu 5:
Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{6xy}} = \frac{1}{6}\).
Câu 6:
Cho hình chóp S ABCD có đáy ABCD là hình bình hành với O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm SA và SD. Chứng minh ba đường thẳng SO, BN, CM đồng quy.
Câu 7:
về câu hỏi!