Câu hỏi:

04/07/2023 2,138

Cho tam giác DEF vuông ở E. Tia phân giác của góc D (M thuộc EF). Từ M vẽ MH vuông góc với DF (H thuộc DF).

a) Chứng minh: ∆DEM = ∆DHM.

b) Gọi K là giao điểm của tia DE và tia MH. Tam giác KMF là tam giác gì? Vì sao?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác DEF vuông ở E. Tia phân giác của góc D (M thuộc EF). Từ M vẽ MH (ảnh 1)

a) Xét ∆DEM và ∆DHM có:

\(\widehat E = \widehat H = 90^\circ \)

DM chung

\(\widehat {EDM} = \widehat {HDM}\) (gt)

Do đó ∆DEM = ∆DHM (g.c.g)

Suy ra EM = HM (hai cạnh tương ứng).

b) Xét ∆EMK và ∆HMF có:

\(\^E = \widehat H = 90^\circ \)

EM = MH

\(\widehat {EMK} = \widehat {HMF}\)

Do đó ∆EMK = ∆HMF (c.g.c)

Suy ra MK = MF (hai cạnh tương ứng).

Vậy tam giác MKF cân tại M.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn 5 học sinh tùy ý trong 11 học sinh có số cách là: \(C_{11}^5\)

\( \Rightarrow n\left( \Omega \right) = 462\)

Gọi A là biến cố chọn ra 5 học sinh trong đó có cả nam và nữ.

Khi đó \(\overline A \) là biến cố chọn ra 5 học sinh trong đó tất cả là nữ hoặc tất cả là nam.

Suy ra n(\(\overline A \)) = \(C_6^5 + C_5^5 = 6 + 1 = 7\) (Cách)

\( \Rightarrow n(A) = n\left( \Omega \right) - n\left( {\overline A } \right) = 462 - 7 = 455\) (cách)

Vậy có 455 cách chọn ra 5 học sinh trong đó có cả nữ và nam.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP