Câu hỏi:
04/07/2023 1,750
Cho hình bình hành ABCD, AB = 2AD. Gọi P, Q lần lượt là trung điểm của AB và CD.
a) Tứ giác APQD là hình gì? Vì sao?
b) Gọi I là giao điểm AQ và PD, gọi K là giao điểm của BQ và CP. Chứng minh tứ giác IPKQ là hình chữ nhật.
Cho hình bình hành ABCD, AB = 2AD. Gọi P, Q lần lượt là trung điểm của AB và CD.
a) Tứ giác APQD là hình gì? Vì sao?
b) Gọi I là giao điểm AQ và PD, gọi K là giao điểm của BQ và CP. Chứng minh tứ giác IPKQ là hình chữ nhật.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) Xét tứ giác APQD có: AP // QD; AP = QD
Suy ra tứ giác APQD là hình bình hành
Mà AP = AD nên APQD là hình thoi
b) Xét tứ giác PBQD có: PB // QD; PB = QD
Suy ra tứ giác PBQD là hình bình hành
Do đó PD // QB và PD = QB (1)
Xét tứ giác BPQC có: BP // QC; BP = QC
Suy ra tứ giác BPQC là hình bình hành
Mà BP = BC nên BPQC là hình thoi
Nên PC và QB cắt nhau tại trung điểm của mỗi đường.
Hay K là trung điểm của BQ.
Do đó \(KQ = \frac{{BQ}}{2}\) (2)
Ta có: APQD là hình thoi
Nên AQ và PD vuông góc với nhau tại trung điểm của mỗi đường
Suy ra I là trung điểm của PD
Do đó \(IP = \frac{{PD}}{2}\) (3)
Từ (1), (2) và (3) suy ra IP // QK và IP = QK.
Hay IPKQ là hình bình hành.
Mà \(\widehat {PIQ} = 90^\circ \) nên IPKQ là hình chữ nhật.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn 5 học sinh tùy ý trong 11 học sinh có số cách là: \(C_{11}^5\)
\( \Rightarrow n\left( \Omega \right) = 462\)
Gọi A là biến cố chọn ra 5 học sinh trong đó có cả nam và nữ.
Khi đó \(\overline A \) là biến cố chọn ra 5 học sinh trong đó tất cả là nữ hoặc tất cả là nam.
Suy ra n(\(\overline A \)) = \(C_6^5 + C_5^5 = 6 + 1 = 7\) (Cách)
\( \Rightarrow n(A) = n\left( \Omega \right) - n\left( {\overline A } \right) = 462 - 7 = 455\) (cách)
Vậy có 455 cách chọn ra 5 học sinh trong đó có cả nữ và nam.
Lời giải
Đáp án đúng là: B

Ta có: IO//SA ⇒ IO//(SAD) và IO//(SAB) nên đáp án A và đáp án C đúng.
Ta có (SAC) ∩ (IBD) = IO nên đáp án D đúng.
Câu B ta có thiết diện là ∆IBD nên B sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.