Câu hỏi:

04/07/2023 127

Cho biểu thức: \(A = \frac{{{x^3} + 2{x^2} + x}}{{{x^3} - x}}\) (x {0; 1; −1})

a) Rút gọn biểu thức.

b) Tìm x để biểu thức A = 2.

c) Tìm giá trị nguyên của x để giá trị của biểu thức là một số nguyên.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Điều kiện x ≠ 0; x ≠ 1; x ≠ −1

a) Với x ≠ 0; x ≠ 1; x ≠ −1, ta có:

 \(A = \frac{{{x^3} + 2{x^2} + x}}{{{x^3} - x}}\)

\( = \frac{{x({x^2} + 2x + 1)}}{{x\left( {{x^2} - 1} \right)}}\)

\( = \frac{{{{\left( {x + 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \frac{{x + 1}}{{x - 1}}\)

b) Với x ≠ 0; x ≠ 1; x ≠ −1, ta có:

\(A = \frac{{x + 1}}{{x - 1}} = 2\)

x + 1 = 2x – 2

x = 3 (TMĐK)

Vậy với x = 3 thì A = 2.

c) \(A = \frac{{x + 1}}{{x - 1}} = \frac{{(x - 1) + 2}}{{x - 1}} = 1 + \frac{2}{{x - 1}}\)

Để A nguyên thì 2 \( \vdots \) (x – 1)

(x – 1) Ư(2)

Mà Ư(2) = {1; −1; 2; −2}

x {2; 0; 3; −1}

Kết hợp với điều kiện x ≠ 0; x ≠ 1; x ≠ −1 ta có: x {2; 3}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?

Xem đáp án » 04/07/2023 9,945

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây là sai?

A. Đường thẳng IO song song với mặt phẳng (SAD);

B. Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác;

C. Đường thẳng IO song song với mặt phẳng (SAB);

D. Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO.

Xem đáp án » 04/07/2023 8,519

Câu 3:

Cho tam giác ABC có AB = 2; AC = 3; \(\widehat A = 60^\circ \). Tính độ dài cạnh BC.

Xem đáp án » 04/07/2023 5,648

Câu 4:

Chứng minh rằng n4 + 2n3 – n2 – 2n chia hết cho 24 với mọi số nguyên n.

Xem đáp án » 04/07/2023 4,522

Câu 5:

Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{6xy}} = \frac{1}{6}\).

Xem đáp án » 04/07/2023 3,476

Câu 6:

Cho hình chóp S ABCD có đáy ABCD là hình bình hành với O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm SA và SD. Chứng minh ba đường thẳng SO, BN, CM đồng quy.

Xem đáp án » 04/07/2023 2,111

Câu 7:

Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D). So sánh \(\widehat {CAD}\)\(\widehat {CBD}\).

Xem đáp án » 04/07/2023 1,948

Bình luận


Bình luận