Câu hỏi:

04/07/2023 829

Cho: \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0\) (abc ≠ 0). Tính biểu thức: \(A = \frac{{b + c}}{a} + \frac{{c + a}}{b} + \frac{{a + b}}{c}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0\)

\( \Leftrightarrow \frac{{ab + bc + ca}}{{abc}} = 0\)

ab + bc + ca = 0

Mặt khác, \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0\)

\( \Leftrightarrow \frac{1}{a} + \frac{1}{b} = - \frac{1}{c}\)

\( \Leftrightarrow {\left( {\frac{1}{a} + \frac{1}{b}} \right)^3} = - \frac{1}{{{c^3}}}\)

\( \Leftrightarrow \frac{1}{{{a^3}}} + \frac{1}{{{b^3}}} + 3.\frac{1}{{ab}}.\left( {\frac{1}{a} + \frac{1}{b}} \right) = - \frac{1}{{{c^3}}}\)

\( \Leftrightarrow \frac{1}{{{a^3}}} + \frac{1}{{{b^3}}} + 3.\frac{1}{{ab}}.\left( { - \frac{1}{c}} \right) = \frac{{ - 1}}{{{c^3}}}\)

\( \Leftrightarrow \frac{1}{{{a^3}}} + \frac{1}{{{b^3}}} + \frac{1}{{{c^3}}} = \frac{3}{{abc}}\)  (*)

Khi đó: \(\frac{{\left( {b + c} \right)}}{a} = \frac{{ab + ac}}{{{a^2}}} = \frac{{ - bc}}{{{a^2}}} = \frac{{ - abc}}{{{a^2}}}\)

Tương tự ta có: \(\frac{{\left( {a + b} \right)}}{c} = \frac{{ - abc}}{{{c^3}}}\); \(\frac{{\left( {a + c} \right)}}{{{b^2}}} = \frac{{ - abc}}{{{b^3}}}\).

\(M = \frac{{ - abc}}{{{a^3}}} + \frac{{ - abc}}{{{b^3}}} + \frac{{ - abc}}{{{c^3}}}\)

\( = - abc\left( {\frac{1}{{{a^3}}} + \frac{1}{{{b^3}}} + \frac{1}{{{c^3}}}} \right)\)

\( = - abc.\frac{3}{{abc}} = - 3\) (theo *)

Vậy M = −3.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn 5 học sinh tùy ý trong 11 học sinh có số cách là: \(C_{11}^5\)

\( \Rightarrow n\left( \Omega \right) = 462\)

Gọi A là biến cố chọn ra 5 học sinh trong đó có cả nam và nữ.

Khi đó \(\overline A \) là biến cố chọn ra 5 học sinh trong đó tất cả là nữ hoặc tất cả là nam.

Suy ra n(\(\overline A \)) = \(C_6^5 + C_5^5 = 6 + 1 = 7\) (Cách)

\( \Rightarrow n(A) = n\left( \Omega \right) - n\left( {\overline A } \right) = 462 - 7 = 455\) (cách)

Vậy có 455 cách chọn ra 5 học sinh trong đó có cả nữ và nam.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay